рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Решение систем линейных дифференциальных уравнений пятиточечным методом Адамса – Башфорта

Работа сделанна в 2001 году

Решение систем линейных дифференциальных уравнений пятиточечным методом Адамса – Башфорта - Курсовая Работа, раздел Математика, - 2001 год - Министерство Образования И Науки Украины Национальный Технический Университет...

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ Кафедра Системы и Процессы Управления ОТЧЕТ о научно-исследовательской курсовой работе по численным методам на тему РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЯТИТОЧЕЧНЫМ МЕТОДОМ АДАМСА БАШФОРТА Выполнил студент гр. И-29 Уханов Е.В. Руководитель работы Д.т.н. проф Бреславский Д.В. Харьков 2001 СОДЕРЖАНИЕ Введение 1. Постановка задачи 2. Методы решения 1. Метод прогноза и коррекции 2.2 Модифицированный метод Гаусса .3. Описание алгоритма 4. Описание программы 5. Примеры расчетов 1. Решение одного дифференциального уравнения 17 5.2. Решение системы дифференциальных уравнений .19 Заключение 20 Список использованной литературы 21 Приложение 22 Приложение 23 Приложение 24 Приложение 25 ВВЕДЕНИЕ Во многих областях науки и техники , а также отраслях наукоемкой промышленности , таких как авиационная , космическая , химическая , энергетическая являются весьма распространенные задачи прогноза протекания процессов , с дальнейшей их коррекцией . Решение такого рода задач связано с необходимостью использования численных методов , таких как метод прогноза и коррекции , метод Адамса-Башфорта , метод Эйлера , метод Рунге-Кута , и др. При этом , стоит задача решения системы линейных дифференциальных уравнений первого порядка одним из методов интегрирования , на произвольном промежутке времени . Одним из оптимальных методов дающих высокую точность результатов является пяти точечный метод прогноза и коррекции Адамса-Башфорта . Для повышения точности метода используется трех точечный метод прогноза и коррекции с автоматическим выбором шага , что приводит к универсальному методу интегрирования систем дифференциальных уравнений произвольного вида на любом промежутке интегрирования . Разработка программных средств реализующих расчет точного прогноза протекания процессов , является важнейшей вспомогательной научно-технической задачей . Целью данной курсовой работы является разработка алгоритма решения систем линейных дифференциальных уравнений первого порядка пяти точечным методом прогноза и коррекции Адамса-Башфорта . 1. ПОСТАНОВКА ЗАДАЧИ Рассмотрим произвольную систему линейных дифференциальных уравнений первого порядка 1.1 тогда как А 1.2 где А заданная матрица размером N x N вектор с N координатами , который подлежит определению N произвольное целое число - заданные вектора правых частей с N координатами . С использованием метода прогноза и коррекции Адамса-Башфорта пятого порядка , необходимо получить значения неизвестных для заданных временных интервалов . Для стартования метода необходимо использовать метод прогноза и коррекции третьего порядка с переменным шагом , на заданных временных промежутках 2. МЕТОДЫ РЕШЕНИЯ 1. Метод прогноза и коррекции Метод прогноза и коррекции относится к задачам класса Коши , а именно к численным решениям многошаговыми методами . Рассмотрим задачу Коши , 1.1 Подставим в 2.1.1 точное решение yx , и проинтегрируем это уравнение на отрезке , тогда получим 2.1.2 где в последнем член предполагаем , что px полином , аппроксимирующий fx,yx . Чтобы построить этот полином , предположим , что - приближения к решению в точках . Будем считать для начала , что узлы Xi расположены равномерно с шагом h . тогда fi fxi,yi, ik,k-1,k-2 k-N есть приближения к f x,yx в точках и мы в качестве P возьмем интерполяционный полином для выбора данных xi,fi , i k,k-1,k-2 k-N . Таким образом , P полином степени N , удовлетворяющий условиям Pxifi , i k,k-1,k-2 k-N . В принципе , можем проинтегрировать этот полином явно , что ведет к следующему методу 1.3 В простейшем случае , когда N0 , полином P есть константа , равная fk , и 2.1.3 превращается в обычный метод Эйлера 1.4 Если N1 , то P есть линейная функция , проходящая через точки xk-1,fk-1 и xk,fk , т.е. 2.1.5 интегрируя этот полином от Xk до Xk1 , получим следующий метод 2.1.6 который является двухшаговым , поскольку использует информацию в двух точках xk и xk-1 . Аналогично , если N2 , то P - есть кубический интерполяционный полином , а соответствующий метод определяется формулой 1.7 Отметим , что метод 2.1.6 есть метод Адамса-Башфорта второго порядка , 2.1.7 метод Адамса-Башфорта четвертого порядка . Для стартования метода 2.1.7 необходимы сведения о четырех предыдущих точках . Соответственно данный метод требует вычисления стартующих данных . Воспользуемся для нахождения второй точки одношаговым методом Эйлера , который имеет вид Таким образом , подставляя начальные условия, мы находим вторую точку . Следует заметить , что степень точности совпадает со степенью точности остальных методов , что является существенным фактором в стартовании метода прогноза и коррекции . Ввиду того , что стартовые методы имеют более низкий порядок , в начале приходится считать с меньшим шагом и с использованием большего промежутка времени . В данном случае метод Эйлера для дальнейшего интегрирования не оправдывает себя . Для этих целей воспользуемся трехшаговым методом прогноза и коррекции с переменным шагом . Рассуждая также , как для метода Адамса-Башфорта , который излагается в работах 1,2,3 , мы мы приходим к формулам Прогноз 1.8 Коррекция 2.1.9 где h - шаг интегрирования , изменяющийся на малом промежутке времени в соответствии с условиями Рунге , где в свою очередь - малое конкретное значение , при невыполнении условия которого увеличивается шаг hhN а - малое конкретное значение , при невыполнении условия шаг соответственно уменьшается hhN , где N - некоторое целое число больше единицы . Оптимально , для вычисления новой точки , с помощью метода прогноза и коррекции , используется формула 2.1.10 Таким образом, мы воспользовались простым трех шаговым методом прогноза и коррекции , для стартования метода Адамса-Башфорта . Преимущества данного метода заключаются в его высокой точности , авто подборе шага , что во много раз повышает точность самого метода Адамса-Башфорта , и делает его оптимальным для задач такого рода . Метод Адамса-Башфорта использует уже посчитанные значения в точке Xk и в предыдущих точках . В принципе , при построении интерполяционного полинома , мы можем использовать и точки Xk1,Xk2 Простейший случай при этом состаит в использовании точек Xk1,Xk Xk-N и построения интерполяционного полинома степени N1 , удовлетворяющего условиям PXifi , Ik1,k k-N . При этом возникает класс методов , известных как методы Адамса-Моултона . Если N0 , то p линейная функция , проходящая через точки Xk,fk и Xk1,f k1 , и соответствующий метод 2.1.11 является методом Адаиса-Моултона 2 , именно им мы воспользовались в формуле 2.1.9 коррекции спрогнозированной точки в трех шаговом методе . Если N2 , то p кубический полином , построенный по точкам и соответствующий метод 2.1.12 является методом Адамса-Моултона четвертого порядка . В силу того , что по сути fk1 неизвестная , то методы Адамса-Моултона 2.1.11,2.1.12 называют неявными . В тоже время методы Адамса-Башфорта называют явными . Теперь воспользовавшись явной формулой 2.1.7 , и неявной формулой 2.1.12 , используя их совместно , мы приходим к методу Адамса-Башфорта четвертого порядка 2.1.13 Стоит обратить внимание , что в целом этод метод является явным . Сначало по формуле Адамса-Башфорта вычисляется значение , являющееся прогнозом . Затем используется для вычисления приближенного значения , которое в свою очередь используется в формуле Адамса-Моултона . Таким образом формула Адамса-Моултона корректирует корректирует приближение , называемое формулой Адамса-Башфорта . Теперь рассмотрим произвольную систему линейных дифференциальных уравнений первого порядка где A Заданная матрица размером NxN - вектор с N координатами , который подлежит определению . В связи с тем , что связь между искомыми неизвестными определяется матрицей коэффициентов A , на каждом шаге по времени , необходимо решить систему относительно неизвестных скоростей , для е решения воспользуемся модифицированным методом Гаусса , который описан в разделе 2.2 . Далее, интегрируя сначала ранее описанными методами методом Эйлера на первом шаге , трех точечным методом прогноза и коррекции с авто подбором шага , на малом промежутке времени и с малым начальным шагом , для повышения точности стартующих методов на оставшемся промежутке времени производим интегрирование с постоянным шагом пяти точечным методом прогноза и коррекции Адамса-Башфорта 2.1.13 , 2 , 3 . 2.2 Модифицированный метод Гаусса Как типичный пример решения систем линейных дифференциальных уравнений , рассмотрим систему четырех линейных алгебраических уравнений . Для решения системы четырех линейных алгебраических уравнений с четырьмя неизвестными модифицированным методом Гаусса необходимо Составить систему 2.2.1 1 Каждое уравнение делиться на коэффициент при X1 2 Теперь образуем нули в первом столбце матрицы системы вычитаем 2-ое из 1-ого , 3-е из 2-ого , 4-ое из 3-его 2.2.2 3 Повторив еще раз эти операции получим систему двух уравнений с двумя неизвестными , решение которой можно получить по формулам Крамера 2.2.3 Решение же X1 и X2 можно получить , подставив в какое-либо из уравнений систем 2.2.1 и 2.2.2 и разрешив эти уравнения относительно соответствующей переменной . 3.ОПИСАНИЕ АЛГОРИТМА Программа начинается с вывода сообщения о программе . После происходит считывание необходимых исходных данных из файла , для дальнейшей работоспособности алгоритма , а именно начальных условий и матрицы коэффициентов системы линейных дифференциальных уравнений первого рода , начального шага интегрирования , левого и правого условий Рунге , время интегрирования по трех шаговому методу прогноза и коррекции , время интегрирования по пяти точечному методу Адамса-Башфорта . С помощью метода Эйлера находим дополнительные начальные условия.

Решение систем линейных дифференциальных уравнений мы описываем отдельной процедурой, что облегчает дальнейшую алгоритмизацию. Далее составляем цикл, для реализации алгоритма нахождения всех Yk1 точек на заданном малом промежутке времени, и проверкой на условия Рунге, по трех шаговому методу прогноза и коррекции с авто подбором шага. После чего мы организовываем цикл, реализующий алгоритм нахождения точек по методу Адамса-Башфота, на заданном большом промежутке времени и с шагом автоматически подобранным предыдущим методом. Вычисленные данные записываем файл, по ним формируем массив данных, которые выводим в сответствии с масштабированием на экран в виде графиков. Блок-схема приведена в Приложении 1 . 4.

Описание программы

Тексты программной оболочки PrandCo M version 2.41 приведены в приложе... Описание программы. 5.. Модуль реализующий создание и управления главного и субменю, есть PACM... Рассмотрим потомка являющегося типичным представителем родителя TForm ...

Примеры расчетов

5.2.. Для анализа достоверности получаемых результатов рассмотрим следующие ... Пусть требуется решить уравнение при начальном условии y01 , 0 x 1 , и... точность решений с переменным шагом выше. Результаты исследования приведены в таблице 2 .

Решение системы дифференциальных уравнений

Мы приходим к выводу, что точность решения одного уравнения и системы ... Вторым этапом анализа достоверности полученных результатов была провер... . Результаты исследования для разных начальных шагов интегрирования прив... Решение системы дифференциальных уравнений.

Заключение

Заключение В данной курсовой научно-исследовательской работе разработан алгоритм и программа решения систем линейных дифференциальных уравнений первого порядка пяти точечным методом прогноза и коррекции Адамса-Башфорта. Проведены тестовые расчеты, подтвердившие высокую эффективность и точность метода Адамса-Башфорта со стартованием трех точечным методом прогноза и коррекции с переменным шагом. Проведены ряд исследований решения систем как с постоянным шагом, так и с переменным шагом на сходимость к постоянному шагу. Во всех случаях получены результаты высокой точности. Список используемой литературы 1.Дж. Ортега , У.Пул Введение в численные

МЕТОДЫ РЕШЕНИЯ

под редакцией А.А.Абрамова - М.Наука. NetMail FidoNet 2461212.21 E-Mail JVUMailboxrambler.ru Программа разра... Версия 2.XX Программа разработана студентом Национального Технического... NetMail FidoNet 2461212.21 E-Mail jvumailboxrambler.ru Программа разра... FindFiletnfrj8.fnt TIEr.

– Конец работы –

Используемые теги: Решение, систем, ных, дифференциальных, уравнений, пятиточечным, методом, Адамса, Башфорта0.119

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Решение систем линейных дифференциальных уравнений пятиточечным методом Адамса – Башфорта

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Математическая модель. Решение нелинейных уравнений. Решение систем линейных алгебраических уравнений
Погрешность математической модели связана с ее приближенным описанием реального объекта Например если при моделировании экономической системы не... Исходные данные... Исходные данные как правило содержат погрешности так как они либо неточно измерены либо являются результатом...

Решение систем линейных алгебраических уравнений методом простых итераций и методом Зейделя
При использовании итерационных процессов, сверх того, добавляется погрешность метода. Заметим, что эффективное применение итерационных методов существенно зависит… Сейчас разберем несколько определений которые будем использовать в этой работе.Система линейных уравнений с n…

ТЕКСТЫ ЛЕКЦИЙ ЛЕКЦИЯ 1. СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ. 1. Системы линейных уравнений
ЛЕКЦИЯ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ... Системы линейных уравнений Равносильные системы линейных уравнений...

Решение систем дифференциальных уравнений методом Рунге-Куты 4 порядка
Листов 28 Таблиц 2 Графиков 4 Решить систему дифференциальных уравнений методом Рунге-Кутты 4 порядка, расчитать записимость концентрации веществ в… Переходные процессы в радиотехнике, кинетика химических реакций, динамика… Единственные решения выделяют с помощью дополнительных условий, которым должны удовлетворять искомые решения.

Решение систем линейных алгебраических уравнений методом Гаусса и Зейделя
Хотя задача решения системы линейных уравнений сравнительно редко представляет самостоятельный интерес для приложений, от умения эффективно решать… В значительной степени ограничения на размерность решаемых систем можно снять,… Поэтому при создании вычислительных алгоритмов линейной алгебры большое внимание уделяют способам компактного…

Системы линейных неравенств и их решение. Геометрическая интерпретация систем линейных неравенств
Линейные неравенства Строгие неравенства Нестрогие неравенства Какой геометрический... Далее приведем простой пример задачи такого класса... Компания специализируется на выпуске хоккейных клюшек и наборов шахмат Каждая клюшка приносит компании прибыль в...

ЛЕКЦИЯ № 2 / 3 2. Решение систем линейных уравнений методом Гаусса
Кафедра Автоматизации управления войсками... Только для преподавателей...

Реализация примера решений дифференциального уравнения второго порядка методом Рунга-Кутта при использовании компилятора C+

Итерационные методы решения нелинейных уравнений
Решение. 1. Докажем графическим методом единственность корня нелинейного уравнения (1). Из графика функции на Рис.1 видно, что функ-ция пересекает… Рис.1 Аналитический метод. Функция непрерывна на отрезке , имеет на концах… В качестве начального приближения здесь выбира-ется правый или левый конец отрезка, в зависимости от того, в котором…

Методы решения систем линейных неравенств
Систематическое же изучение системлинейных неравенств началось в самом конце 19 века, однако о теории линейныхнеравенств стало возможным говорить… Графический метод Графический методзаключается в построении множества… В связи с ограниченнымивозможностями наглядного графического представления данный метод применяетсятолько для систем…

0.039
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам