Основные элементы прикладной математики

Основные элементы прикладной математики. Математические модели.

Исследование прикладных задач обычно начинается с построения и анализа простейшей, наиболее грубой математической модели рассматриваемого объекта. Однако в дальнейшем часто возникает необходимость уточнить модель, сделать е соответствие объекту более полным. Это может быть обусловлено разными причинами требованием более высокой точности, появление новой информации об объекте, которую нужно отразить в математической модели, расширением диапазона параметров, выводящим за пределы применимости исходной модели, и так далее.

При построении новой модели полезно максимально полно использовать опыт и результаты, полученные на первом этапе. Часто процесс последовательного развития и уточнения модели повторяется неоднократно. В настоящее время нельзя назвать область человеческой деятельности, в которой в той или иной степени не использовались бы методы моделирования. Остановимся на общей теории моделирования. Методологическая основа моделирования заключается в следующем.

Все то, на что направлена человеческая деятельность, называется объектом лат. objectum предмет. Выработка методологии направлена на упорядочение получения и обработки информации об объектах, которые существуют вне нашего сознания и взаимодействуют между собой и внешней средой. В научных исследованиях большую роль играют гипотезы, то есть определенные предсказания, основывающиеся на небольшом количестве опытных данных, наблюдений, догадок. Быстрая и полная проверка гипотез может быть проведена в ходе специально поставленного эксперимента.

При формулировании и проверки правильности гипотез большое значение в качестве метода суждений имеет аналогия. Аналогией называют суждение, о каком либо частном сходстве двух объектов, причем такое сходство может быть существенным и несущественным. Необходимо отметить, что понятия существенности и несущественности сходства или различия объектов условны и относительны. Существенность сходства различия зависит от уровня абстрагирования и в общем случае определяется конечной целью проводимого исследования.

Современная научная гипотеза создается, как правило, по аналогии с проверенными на практике научными положениями. Таким образом, аналогия связывает гипотезу с экспериментом. Гипотезы и аналогии, отражающие реальный, объективно существующий мир, должны обладать наглядностью или сводится к удобным для исследования логическим схемам. Такие логические схемы, упрощающие рассуждения и логические построения или позволяющие проводить эксперименты, уточняющие природу явлений, называются моделями.

Другими словами модель лат. modulus - мера это объект заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала. Моделированием называется замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала с помощью объекта-модели. Таким образом, моделирование может быть определено как представление объекта моделью для получения информации об этом объекте путем проведения экспериментов с его моделью.

И.Т. Фролов отмечал, что моделирование означает материальное или мысленное имитирование реально существующей системы путем специального конструирования аналогов моделей, в которых воспроизводятся принципы организации и функционирования этой системы. Здесь в основе мысль, что модель средство познания, главный ее признак - отображение. Теория замещения одних объектов оригиналов другими объектами моделями и исследование свойств объектов на их моделях называется теорией моделирования.

Понятие математического моделирования как методологии научных исследований Под математическим моделированием, в узком смысле слова, понимают описание в виде уравнений и неравенств реальных физических, химических, технологических, биологических, экономических и других процессов. Для того чтобы использовать математические методы для анализа и синтеза различных процессов, необходимо уметь описать эти процессы на языке математики, то есть описать в виде системы уравнений и неравенств.

Как методология научных исследований математическое моделирование сочетает в себе опыт различных отраслей науки о природе и обществе, прикладной математики, информатики и системного программирования для решения фундаментальных проблем. Математическое моделирование объектов сложной природы сквозной единый цикл разработок от фундаментального исследования проблемы до конкретных численных расчетов показателей эффективности объекта. Результатом разработок бывает система математических моделей, которые описывают качественно разнородные закономерности функционирования объекта и его эволюцию в целом как сложной системы в различных условиях.

Вычислительные эксперименты с математическими моделями дают исходные данные для оценки показателей эффективности объекта. Поэтому математическое моделирование как методология организации научной экспертизы крупных проблем незаменимо при проработке народнохозяйственных решений. В первую очередь это относится к моделированию экономических систем.

По своей сути математическое моделирование есть метод решения новых сложных проблем, поэтому исследования по математическому моделированию должны быть опережающими. Следует заранее разрабатывать новые методы, готовить кадры, умеющие со знанием дела применять эти методы для решения новых практических задач. Математическая модель может возникнуть тремя путями В результате прямого изучения реального процесса. Такие модели называются феноменологическими. В результате процесса дедукции.

Новая модель является частным случаем некоторой общей модели. Такие модели называются асимптотическими. В результате процесса индукции. Новая модель является обобщением элементарных моделей. Такие модели называют моделями ансамблей. Процесс моделирования начинается с моделирования упрощенного процесса, который с одной стороны отражает качественные основные явления, с другой стороны допускает достаточно простое математическое описание. По мере углубления исследования строятся новые модели, более детально описывающие явление.

Факторы, которые считаются второстепенными на данном этапе, отбрасываются. Однако, на следующих этапах исследования, по мере усложнения модели, они могут быть включены в рассмотрение. В зависимости от цели исследования один и тот же фактор может считаться основным или второстепенным. Математическая модель и реальный процесс не тождественны между собой. Как правило, математическая модель строится с некоторым упрощением и при некоторой идеализации.

Она лишь приближенно отражает реальный объект исследования, и результаты исследования реального объекта математическими методами носят приближенный характер. Точность исследования зависит от степени адекватности модели и объекта и от точности применяемых методов вычислительной математики. Схема построения математических моделей следующая - Выделение параметра или функции, подлежащей исследованию Выбор закона, которому подчиняется эта величина Выбор области, в которой требуется изучить данное явление. 2.2.