рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Моделирование с помощью дифференциальных уравнений в частных производных

Работа сделанна в 2000 году

Моделирование с помощью дифференциальных уравнений в частных производных - Дипломная Работа, раздел Математика, - 2000 год - Использование дифференциальных уравнений в частных производных для моделирования реальных процессов Моделирование С Помощью Дифференциальных Уравнений В Частных Производных. Диф...

Моделирование с помощью дифференциальных уравнений в частных производных. Дифракция излучения на сферической частице.

Перейдем теперь к рассмотрению задачи о дифракции электромагнитных волн на сферической частице. Как известно, в случае монохроматического излучения частоты система уравнений Максвелла сводится к системе уравнений для напряженностей электрического и магнитного полей 1 где - волновое число для пустоты с0 скорость света в вакууме.

Обозначим через k k0 m волновое число в среде с комплексным показателем преломления m n ix. Показатели преломления и поглощения n и x называются оптическими постоянными, их зависимость от обычно известна из эксперимента. Задача о разыскании шести неизвестных функций может быть сведена к задаче о разыскании двух функций электрического и магнитного потенциалов U1 и U2, которые являются решениями колебательного уравнения.

Получим их по методу Фурье в виде бесконечных сумм частных решений с неопределенными коэффициентами, которые определяются сшиванием значений внутри и снаружи сферы. Через найденные потенциалы составляющие полей легко вычисляются дифференцированием. Пусть на сферическую частицу радиуса а, центр которой совмещен с началом координат, в отрицательном напрвлении оси Oz падает линейно поляризованная плоская волна рис 4 Ось Ox является направлением электрических колебаний, а ось Oy магнитных.

Электрическое и магнитное поля в падающей волне описываются формулами 2 где ka mak0 величина волнового вектора падающего излучения во внешней среде с вещественным показателем преломления ma. Рис. 3.1. Сферическая система координат для изучения дифракции света на шаре. В дальнейшем в промежуточных формулах всюду будет опущен множитель Е0, который будет внесен в окончательные выражения для полей.

В сферической системе координат, в которой естественно решать данную задачу, уравнения Максвелла 1 имеют вид 5 6 7 8 Падающее поле возбуждает в шаре внутреннее поле, а во внешнем пространстве дифрагированное поле, причем все эти поля должны иметь оду и ту же временную зависимость, т.е. частоту. Произвольное электромагнитное поле будем представлять как суперпозицию двух типов колебаний. Первый тип назовем электрическими колебаниями и будем считать, что у этих колебаний радиальная составляющая магнитного поля во всех точках равна нулю 9 Второй тип магнитные колебания 10 В случае электрических колебаний из уравнения 6 получим Это соотношение, очевидно, будет удовлетворено, если предположим, что есть производные от некоторой третьей функции первая по, а вторая по Подставляя эти соотношения в формулы 4 и 5 получим Этим соотношениям можно удовлетворить, если положить где - некоторая новая функция.

Тогда найдем. Если теперь вместо функции ввести, то формула 3 получит вид 11 тогда как 7 и 8 приводятся к одному и тому же волновому уравнению для функции 12 Используя указанные выше соотношения и заменяя в выражении для производные по через производные по r из уравнения 12, получим следующие соотношения 13 которые выражают все составляющие полей для случая через одну функцию - потенциал электрических колебаний.

Подставив эти выражения в уравнение 3 8, легко убедиться в том, что равенства 13 образуют решение уравнений Максвелла, если U1 является решением волнового уравнения. Аналогично для магнитных колебаний все составляющие полей могут быть выражены через некоторую функцию - потенциал магнитных колебаний.

В общем случае в поле присутствуют колебания обоих типов. Для составляющих полей получим при этом следующие выражения 14 Функции U1 и U2 являются решением волнового уравнения. 15 которое будем решать по методу Фурье значок у U временно опущен, он появится при рассмотрении граничных условий, которые для U1 и U2 различны.

В качестве частного решения положим 16 Подставляя 16 в 13 и разделяя переменные, получим для f и Y следующие уравнения 17 18 Уравнение для Y имеет однозначное и непрерывное решение на всей сфере только для, где n 0, 1, 2 В этом случае его решением являются сферические функции 19 где а - полином Лежандра. В уравнении 17 сделаем подстановку, тогда для Rn x получим следующее уравнение x kr 20 Это уравнение Бесселя и его решением являются цилиндрические функции с полуцелым индексом. Таким образом, n-е частное решение уравнения 15 будет 21 Из всех цилиндрических функций только бесселевы функции первого рода конечны в нуле. Поэтому только они могут быть использованы для решения внутри шара. Вне шара, в соответствии с принципом излучения, решение должно иметь характер расходящейся волны.

Так как временной множитель выбран в виде, то только ханкелевская функция второго рода дает волну, расходящуюся из источника дифракции. Обозначим 22 тогда частное решение, очевидно, следует представить в виде суперпозиции частных решений с неопределенными коэффициентами, которые вычисляются из граничных условий.

Граничные условия для потенциалов U1 и U2 на шаре получаются из требования непрерывности тангенциальных составляющих полей. Из 14 видно, что для этого необходимо, чтобы на поверхности шара были непрерывны следующие величины, т.е. 23 24 где Ua потенциал дифрагированного поля, а Ui внутреннего. Представим теперь электрический и магнитный потенциалы падающей волны также в виде рядов по, используя известное разложение плоской волны по полиномам Лежандра 25 Тогда после преобразований получим 26 Потенциалы и должны иметь такую же угловую зависимость, как и потенциалы падающего поля. Поэтому можно записать 27 28 Коэффициенты должны быть определены из условий 23, 24, которые образуют относительно пар коэффициентов и с данным значком две независимые системы по два линейных уравнения.

Запишем их, введя следующие обозначения - относительный комплексный показатель преломления длина волны излучения.

Для и имеем 29 Аналогичная система получается для и 30 Решая эти системы относительно и, получим 31 Аналогичные выражения получаются и для и. Подставляя эти выражения в 27 и 28, получаем однозначное решение уравнений для потенциалов, удовлетворяющее всем граничным условиям. Из потенциалов, в соответствии с 14, можно получить выражения для составляющих внутреннего и дифрагированного полей. Так как в дальнейшем нас будет интересовать дифрагированное поле, то выпишем только его составляющие, восстановив опущенный ранее множитель Е0 32 Штрихи всюду означают производные по аргументу, указанному под знаком функции и. На достаточно большом расстоянии от рассматриваемой частицы, в так называемой волновой зоне, можно пренебречь составляющими Er и Hr по сравнению с составляющими по и. Дифрагированное поле будет являться поперечной волной, распространяющейся из источника дифракции.

Введя обозначения 33 34 и применяя асимптоматические выражения для функций при, получим 35 Согласно этим формулам, дифрагированное поле представляется в виде сумм отдельных парциальных волн. Интенсивность возбуждения -й парциальной волны определяется числами, которые существенно зависят от. Поле вне частицы есть суперпозиция падающего и дифрагированного полей 36 Средняя по времени величина вектора потока энергии определяется 37 где - вектор, комплексно сопряженный к. В силу 36 поток может быть представлен в виде, где - поток падающего поля дифрагированного поля и - поток, обязанный интерференции падающего и рассеянного излучений.

Определим величины сечений поглощения сп и рассеяния ср излучения частицей 38 где J0 интенсивность падающего излучения радиальные составляющие потоков элемент телесного угла, а - элемент площади на сфере.

Все интегралы распространены по сфере. Полное ослабление потока в результате прохождения им частицы будет складываться из рассеяния и поглощения, т.е. для сечения ослабления излучения частицей имеем с сп ср. Поскольку поток падающего излучения постоянен по направлению, то и для искомых сечений получим 39 40 Рассмотрим интеграл в 39. Имеем Подставляя сюда выражение 32 для полей, выполняя интегрирование по и группируя соответствующим образом члены, получим двойную сумму следующих двух типов выражений Сумма будет иметь общий множитель. Оба интеграла легко вычисляются. Интеграл а равен нулю, так как его подынтегральное выражение есть, а функция равна нулю при. В интеграле б преобразуем вначале первое слагаемое, проинтегрировав его по частям Заключение В дипломной работе приведены некоторые примеры применения дифференциальных уравнений для моделирования таких реальных процессов, как колебания струны, электрические колебания в проводах, распространение тепла в стержне и пространстве, распространение температурных волн в почве, дифракция излучения на сферической частице.

Работа начинается с рассмотрения простейших задач, приводящих к дифференциальным уравнениям гиперболического типа колебания струны, электрические колебания в проводах.

Затем рассматривается один из методов решения уравнений данного типа. Во второй главе рассматриваются дифференциальные уравнения параболического типа распространение тепловых волн и одно из приложений к данной сфере температурные волны. В третьей главе рассматривается вывод уравнения дифракции излучения на сферической частице.

Вследствие большого объема теории по применению дифференциальных уравнений для моделирования реальных процессов в данной дипломной работе не мог быть рассмотрен весь материал.

В заключение хотелось бы отметить особую роль дифференциальных уравнений при решении многих задач математики, физики и техники, так как часто не всегда удается установить функциональную зависимость между искомыми и данными переменными величинами, но зато удается вывести дифференциальное уравнение, позволяющее точно предсказать протекание определенного процесса при определенных условиях.

– Конец работы –

Эта тема принадлежит разделу:

Использование дифференциальных уравнений в частных производных для моделирования реальных процессов

Классические уравнения математической физики являются линейными. Особенность линейных уравнений состоит в том, что если U и V два решения, то… Это обстоятельство позволяет построить общее решение линейного дифференциального уравнения из фиксированного набора…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Моделирование с помощью дифференциальных уравнений в частных производных

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Уравнения гиперболического типа
Уравнения гиперболического типа. Задачи, приводящие к уравнениям гиперболического типа. Уравнения с частными производными 2-го порядка гиперболического типа наиболее часто встречаются в физических

Уравнение электрических колебаний в проводах
Уравнение электрических колебаний в проводах. Как указывалось выше, к уравнению 1 приводит и задача об электрических колебаниях в проводах. Электрический ток в проводе характеризуется величиной i x

Уравнение свободных колебаний струны
Уравнение свободных колебаний струны. Метод разделения переменных или метод Фурье, является одним из наиболее распространенных методов решения уравнений с частными производными. Изложение эт

Распространение тепла в пространстве
Распространение тепла в пространстве. Рассмотрим процесс распространения тепла в трехмерном пространстве. Пусть u x, y, z, t температура в точке с координатами x, y, z с момент времени t. Опытным п

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги