Нестандартный анализ

Нестандартный анализ возник в 1960 году, когда Абрахам Робинсон, специалист по теории моделей, понял, каким образом методы математической логики позволяют оправдать классиков математического анализа XVII и XVIII вв поставив на строгую основу их рассуждения, использующие “бесконечно большие” и бесконечно малые величины.Таким образом, речь шла не о каких-то новых “нестандартных” методах, не имеющих ничего общего с традиционной математикой, а о развитии новых средств внутри стандартной (теоретико-множественной) математики.

Нестандартный анализ остался бы любопытным курьезом, если бы единственным его приложением было обоснование рассуждений классиков математического анализа. Он оказался полезным и при развитии новых математических теорий. Нестандартный анализ можно сравнить с мостом, переброшенным через реку. Постройка моста не расширяет доступной нам территории, но сокращает путь с одного берега на другой.Подобным образом нестандартный анализ делает доказательства многих теорем короче.

Однако, быть может, главное значение нестандартного анализа состоит в другом. Язык нестандартного анализа оказался удобным средством построения математических моделей физических явлений. Идеи и методы нестандартного анализа могут стать важной частью будущей физической картины мира. Во всяком случае уже сейчас многие специалисты по математической физике активно используют нестандартный анализ в своей работе.Несколько примеров нестандартного анализа: Пример 1. Вычислим производную функции . Дадим аргументу x приращение dx, перейдя от точки x к точке x+dx. Выясним, насколько при этом изменилось значение функции . В точке х оно равнялось . В точке оно равняется . Таким образом, оно изменилось на . Отношение приращения функции к приращению аргумента равно Если бесконечно мало, то членом в сумме можно пренебречь, и искомая производная равна . Пример 2. Вычислим аналогичным способом производную функции . Приращение равно ; частное равно . Взяв бесконечно малым, получаем, что производная равна . Пример 5. Построение неизмеримого множества. Каждое действительное число , удовлетворяющее неравенству ,разлагаем в бесконечную двоичную дробь; для обеспечения однозначности запрещаем разложения с бесконечным числом идущих подряд единиц.

Фиксируем произвольное бесконечно большое натуральное число и отбираем те действительные числа , у которых -й член разложения равен единице; множество всех отобранных таким образом действительных чисел неизмеримо по Лебегу.

Если примеры 1 и 2 хотя и могут шокировать нас наивной нестрогостью, но всё же в известной мере соответствуют интуиции, то пример 5 представляется просто-напросто абракадаброй.

Нестандартный анализ, однако, почти сплошь состоит из подобной абракадабры, имеющей в нём точный математический смысл.Он позволяет, в частности, с новой точки зрения посмотреть на многие рассуждения классиков математического анализа, кажущиеся нестрогими, но приводящие к успеху, и путём относительно небольших уточнений сделать их удовлетворяющими современным критериям строгости. ЧТО ТАКОЕ БЕСКОНЕЧНО МАЛЫЕ ? Один из наиболее принципиальных моментов нестандартного анализа состоит в том, что бесконечно малые рассматриваются не как переменные величины, а как величины постоянные.

Достаточно раскрыть любой учебник физики, чтобы натолкнуться на бесконечно малые приращения, бесконечно малые объёмы и т. п. Все эти величины мыслятся, разумеется, не как переменные, а просто как очень маленькие, почти равные нулю. Итак, речь будет идти о бесконечно малых числах. Какое число следует называть бесконечно малым? Предположим, что это положительное число , если оно меньше всех положительных чисел.

Легко понять , что такого не бывает: если больше нуля , то оно является одним из положительных чисел , поэтому наше определение требует , чтобы число было меньше самого себя. Поэтому потребуем, чтобы было наименьшим в множестве положительных чисел.На числовой оси такое должно изобразиться самой левой точкой множества . К сожалению числа с указанными свойствами тоже нет и быть не может: число будет положительным числом, меньшим . Более точное определение бесконечной малости числа >0 , которое мы будем использовать в дальнейшем таково.

Будем складывать число с самим собой, получая числа + и т. д. Если все полученные числа окажутся меньше 1, то число и будет называться бесконечно малым.Другими словами, если бесконечно мало, то сколько раз не откладывай отрезок длины вдоль отрезка длины 1, до конца не дойдёшь. Наше требование к бесконечно малому можно переписать в такой форме 1< Таким образом, если число бесконечно мало, то число бесконечно велико в том смысле, что оно больше любого из чисел : 1, 1+1, 1+1+1, 1+1+1+1 и т.д. Из сказанного можно видеть, что существование бесконечно малых противоречит так называемой аксиоме Архимеда, которая утверждает, что для любых двух отрезков А и В можно отложить меньший из них (А) столько раз, чтобы в сумме получить отрезок, превосходящий по длине больший отрезок (В). Вывод таков: если мы хотим рассматривать бесконечно малые , мы должны расширить множество R действительных чисел до некоторого большого множества *R. Элементы этого нового множества мы будем называть гипердействительными числами.

В нём аксиома Архимеда не выполняется и существуют бесконечно малые числа, такие, что сколько их не складывай с собой, сумма будет всё время оставаться меньше 1. Нестандартный, или неархимедов, анализ изучает множество гипердействительных чисел *R. Какие требования естественно предъявлять к гипердействительным числам? 1). Чтобы множество гипердействительных чисел содержало все обыкновенные действительные числа: R *R. 2).Чтобы над гипердействительными числами можно было выполнять обычные операции: любые два гипердействительные числа нужно уметь складывать, умножать, вычитать и делить, причем так, чтобы выполнялись обычные свойства сложения и умножения.

Кроме того, нужно уметь сравнивать гипердействительные числа по величине, т.е. решить какое из них больше.

Пусть имеется некоторое множество Р, в нём выделены некоторые элементы 0 и 1 и определены операции сложения, вычитания, умножения и деления, ставящие в соответствие двум любым элементам и множества Р их сумму , произведение , разность и частное (если ). Пусть при этом перечисленные операции обладают всеми обычными свойствами. 1. ; 2. ; 3. ; 4. ; 5. ; 6. ; 7. ; 8. ; 9. (если ). В таком случае множество Р называется полем.

Пусть на поле Р введён порядок, т. е. для любой пары не равных друг другу элементов и определено, который из них больше.

При этом выполняются такие свойства: 10. если и , то ; 1. если , то для любого ; 2. если , , то ; если , , то . В таком случае говорят, что введенный порядок превращает Р в упорядоченное поле. Упорядоченное поле Р является неархимедовым тогда и только тогда, когда в нём есть положительные бесконечно малые элементы.Упорядоченное поле Р называется расширением поля действительных чисел R, если Р содержит все действительные числа и, кроме того, операции и порядок из Р, рассматриваемые на элементах их R, совпадают с обычными арифметическими операциями и обычным порядком на действительных числах.

ПРИМЕР НЕАРХИМЕДОВОЙ ЧИСЛОВОЙ СИСТЕМЫ Построим пример неархимедова упорядоченного поля, являющегося расширением поля действительных чисел.Предположим, что искомое расширение *R уже построено, и исследуем его строение. Элементы множества *R мы будем называть гипердействительными числами.

Среди них содержатся и все действительные числа. Чтобы отличить их, будем называть действительные числа (элементы R) стандартными, а остальные гипердействительные числа (элементы *R/R)—нестандартными.По нашему предположению, поле *R содержит бесконечно малые числа, не равные нулю. Гипердействительное число называется бесконечно малым, если все суммы и т. д. меньше 1. Здесь через обозначен модуль гипердействительного числа , определяемый так . Отметим, что стандартное число 0 также оказывается, согласно этому определению, бесконечно малым.

Но все остальные бесконечно малые числа не могут стандартными. Это следует из того, что для стандартных чисел справедлива аксиома Архимеда. Наряду с бесконечно малыми в поле *R существуют и бесконечно большие. Мы называем гипердействительное число А бесконечно большим, если и т.д. Если, бесконечно мало, но отлично от нуля, то число бесконечно велико.Верно и обратное, если число А бесконечно велико, то число бесконечно мало. Отсюда следует, что все бесконечно большие числа нестандартны.

Гипердействительные числа, не являющиеся бесконечно большими, называются конечными. Каждое конечное гипердействительное число можно представить в виде где - стандартное число, а - бесконечно малое. Пусть - конечное гипердействительное число. Разобьём действительные числа на два класса: меньшие и большие . Т.к. конечно, то оба класса не пусты.По “аксиоме полноты“ существует действительное число , разделяющее эти классы.

Легко видеть, что будет бесконечно малым. Число называется стандартной частью конечного гипердействительного числа . Обозначается это так: . Таким образом, множество конечных гипердействительных чисел разбивается на классы. Эти классы называются монадами. Монадой стандартного числа называется множество всех бесконечно близких к нему гипердействительных чисел.Обсудив структуру нестандартного “микромира”, скажем несколько слов о строении нестандартного “макромира”. Их можно разбить на классы (“галактики”), каждый из которых устроен, подобно множеству всех конечных гипердействительных чисел.

Среди галактик нет ни самой большой, ни самой малой; между любыми двумя галактиками есть бесконечно много других галактик. ЧТО ЕЩЕ НУЖНО ОТ БЕСКОНЕЧНО МАЛЫХ ? Рассмотрим, что получается в результате построения поля гипердействительных чисел.Прежде всего, мы получаем не архимедово расширение поля действительных чисел. Кроме того, “каждому объекту стандартного мира” поставлен в соответствие его аналог в “нестандартном мире”. Именно нестандартным аналогом любого действительного числа является оно само; любому подмножеству А множества R соответствует подмножество *А множества *R, каждой функции f из R в R соответствует функция *f из *R в *R, каждой двуместной функции g из R в R соответствует функция *g из *R в *R и т. д. Разумеется, эти аналоги *A, *f, *g не произвольны, а должны обладать некоторыми.