Запрещенные арифметические операции

Запрещенные арифметические операции возможны

Из всех услуг, которые могут быть оказаны науке,
введение новых идей самая важная.

Дж. Дж. Томсон

Наука о числах начала формироваться за 2...3 тысячелетия до нашей эры. Изложение арифметики в более или менее современном виде появилось в ХVIII веке.

Одними из самых краеугольных и устойчивых правил математики являются правила действий с категориями, знаками бесконечности и нуля. Правила утверждают, что не имеют смысла складывание и вычитание бесконечностей и то же самое нулей, запрещается делить на нуль. Эти правила ни у кого не вызывают возражений, они легко воспринимаются здравым смыслом школьников и академиков.

Эти утверждения включены во все учебники и справочники по арифметике и математике. Они крепко вбиты в головы современных людей и, можно сказать, уже закреплены в генетической памяти.

Однако, на мой взгляд, это ошибочная точка зрения. Ниже я покажу, что арифметические операции с названными числами возможны.

Например, при разработке эвристического алгоритма (одного из многих) решения задачи коммивояжера (The Traveling Salesman Problem) возможны соответствующие ситуации.

Напомню, что эта задача с несерьезным названием имеет многочисленные практические приложения, является самой известной задачей класса NP-complete problems (их количество свыше трех тысяч), особенность которого составляет сводимость задач класса друг к другу. Эти задачи не имеют эффективного (полиномиального) алгоритма решения и решаются приближенными и эвристическими алгоритмами. Если же когда-нибудь будет найден полиномиальный алгоритм решения хотя бы одной задачи класса, то весь их сонм будет решаться эффективно.

В журнале Scientific American (1984, 7) отмечалось, что решение таких задач современной математике не по силам.

Суть The Traveling Salesman Problem в следующем. Имеется сеть городов, коммивояжеру необходимо посетить каждый, заходя в города по одному разу – так, чтобы общая длина пути была минимальной. В терминах теории графов имеется матрица расстояний между вершинами графа, расстояния (дуги) могут быть натуральными положительными числами, бесконечностью или нулем. Появление в искомом пути хотя бы одной дуги, равной бесконечности, делает весь путь бесконечным, а дуги, равные нулю, сокращают путь.

Идея алгоритма: выбирать дуги, начиная с первой и аналогично дальше, так, чтобы в строках и столбцах вычеркивались самые плохие дуги, то есть в первую очередь равные бесконечности. При этом в матрице останутся более или менее короткие дуги, которые будут использоваться на дальнейших шагах алгоритма. Последний не находит оптимальный путь, но гарантирует отсутствие провала, если такой шанс есть: в нем не будет дуг, равных бесконечности, или других самых длинных (если такой путь в данной матрице существует). На практике надежные, приближенные к оптимуму решения могут иметь спрос. (Этот алгоритм и другие, упоминаемые в статье, разработаны мною).

Так вот, решая задачу шаг за шагом, мы вынуждены подсчитывать на каждом шаге количество бесконечностей в каждой строке и столбце – и выбирать ту дугу, которая уничтожает их максимальное количество, то есть складывать и вычитать бесконечности.

Хотя по многовековой теории сумма, например, трех бесконечностей равняется одной бесконечности, у меня эта сумма равна трем бесконечностям. И сумма пяти бесконечностей у меня больше, чем, например, четырех.

Возьмем другой эвристический алгоритм. Будем шаг за шагом выбирать дуги так, чтобы в уничтожаемых строках и столбцах было минимум нулей, а в оставляемых – максимум. Замысел состоит в том, чтобы сохранить самые лучшие, нулевые, дуги для последующего использования. В этом алгоритме я складываю и вычитаю нули.

Если читатель полагает, что наглость автора исчерпана, то он ошибся. Коль скоро мы убедились, что складывать и вычитать как бесконечности, так и нули можно и нужно, то надо быть последовательными. Я уверен, что имеет смысл выражение: бесконечность плюс нуль. Читатель мог бы встрепенуться и придумать, вспомнить, свой пример, когда это выражение имеет смысл. Я же снова обращаюсь к конструированию алгоритма решения The Traveling Salesman Problem.

Если соединить названные первый и второй алгоритм в один – третий, то мы будем вынуждены складывать и сравнивать (вычитать) бесконечности и нули. В существующей теории бесконечность плюс нуль раняется одной бесконечности; или бесконечность плюс два нуля тоже равняется одной бесконечности. У меня же эти суммы разные и приводят к разным последствиям.

О нуле

Это число по определению не меняет любое другое, к которому может быть прибавлено, или от которого вычитается. На него нельзя делить. Значит, я не имею права именовать нулем то число, которым оперирую. Выход один: назвать модифицированный нуль каким-нибудь новым именем, например, нев (первые три буквы моей фамилии) и жить дальше человечеству с расширенным перечнем категорий математики. Характеристика нев будет такой: это бесконечно малое число, – нуль, с которым совершаются арифметические операции. В отличие от нуля нев можно будет прибавлять и отнимать, на него можно делить натуральное число, получая в итоге бесконечность.

Какими знаками обозначить предлагаемые новые цифры? Целесообразно сохранить существующие знаки, так как новые категории являются более общим случаем. Старые же понятия этих цифр, если их существование будет иметь смысл, можно обозначать подчеркиванием.

Но я согласен с теми, кто рекомендует не увеличивать количество сущностей без острой необходимости. Может все же лучше изменить определение нуля? Назовем его бесконечно малым числом тогда нев не будет нужен. В любом случае правила арифметики существенно меняются пора думать над последствиями.

О бесконечности

Таким образом я ставлю международной математической общественности ультиматум: или меняются характеристики бесконечности и нуля, или я этой статьей… Геннадий НЕВЕРОВ  

Рассказы о бесконечности

Бесконечность: в математике...

А. ФОМЕНКО

Каждая область современной математики (геометрия, алгебра и т.д.) обладает своим «рисунком бесконечности», связывает с этой идеей свой набор психологических образов и эмоций. Естественно, что нагляднее всего эти образы в геометрии. Геометрическая бесконечность наиболее доступна для демонстрации и в то же время чрезвычайно сложна, поскольку часто вступает в конфликт с нашей геометрической интуицией, основанной на повседневном опыте. Дело в том, что физиологические механизмы восприятия, вероятно, не в состоянии адекватно реагировать на абстрактное интеллектуальное задание «представить геометрическую бесконечность», и наш мозг вынужден подменять «подлинную бесконечность» интуитивно более понятным и грубым геометрическим объектом, иногда совершая при этом незаметную ошибку, подстановку. Поэтому геометрическая интуиция, являясь мощным средством постижения математической истины, может иногда коварно приводить к серьезным ошибкам, от которых, как показывает опыт, не застрахованы и опытные исследователи. Возьмем, к примеру, еще со школы знакомое понятие линии. Если, не спеша, более тщательно его продумать, то оно вскоре обнаружит всю свою сложность. На языке математики линия (кривая) является «одномерным объектом», имеет «одно измерение». Евклид пытался определить линию как «длину без ширины». Классическая механика XVIII...XIX вв., опиравшаяся на конкретные эксперименты, выработала следующее естественное представление о линии (кривой). Если рассмотреть движущееся в пространстве тело достаточно малых размеров (бесконечно малую точку), то траекторию его движения можно назвать линией. Таким образом, линия (кривая) – это след движущейся точки. При этом, конечно, в первую очередь заслуживает изучения случай «непрерывного движения», когда точка не делает мгновенных неожиданных скачков, то есть когда ее след не имеет разрывов. Поскольку движение точки происходит во времени, то, выражаясь языком математики, можно сказать, что линия является образом отрезка времени при непрерывном отображении (отрезка) в пространство. До тех пор, пока мы имеем дело с обычными, не очень сложными механическими системами, такое понятие линии нас вполне устраивает. Интуитивно ясно, что непрерывное, не очень сложное движение точки изображается одномерным объектом – линией. Однако стоит перейти к рассмотрению «бесконечных процессов», как сразу обнаруживается недостаточность нашей формулировки и, следовательно, ограниченность нашей геометрической и механической интуиции, на которой было основано это понятие. Дело в том, что указанные линии изображают лишь «не очень извилистое» движение точки. А теперь предположим, что она начинает очень часто менять направление своего движения, и пусть число таких «изломов» нарастает и стремится к бесконечности (все это можно описать совершенно точно). Тогда сложный след точки может оказаться совершенно непохожим на обычную одномерную линию. Например, он может оказаться квадратом, сферой, шаром или даже так называемой n-мерной фигурой, где «размерность» n может быть сколь угодно велика. Опять-таки, прибегая к языку математики, можно сказать, что все эти объекты являются непрерывными образами одномерного отрезка. В то же время они согласно нашему первоначальному определению являются линиями. Столь странное обстоятельство было впервые подмечено итальянским математиком Д. Пеано в 1890 году в честь него описанные «кривые» и называются кривыми Пеано. Итак, наша геометрическая интуиция (рисующая нам «одномерные траектории движения точки») терпит поражение при столкновении с бесконечным процессом построения достаточно сложной линии.

Современная геометрия знает много примеров подобного рода, и во всех них, так или иначе присутствует бесконечная процедура (актуальная бесконечность), разрушающая в итоге наши привычные представления, сложившиеся на основе повседневного, «конечного» опыта. Этим обстоятельством удачно воспользовался при создании своих замечательных графических работ известный французский художник М.К. Эшер, гравюры которого неоднократно публиковались в нашей научно-популярной прессе. С одной стороны, он изображал «бесконечно сложные объекты», а с другой – «невозможные объекты» (вечные двигатели и проч.), умело эксплуатируя несовершенство и ограниченность нашей геометрической интуиции. При этом он опирался на математические конструкции, применяемые в современной алгебре, геометрии, кристаллографии и т.п. Именно глубоким проникновением в природу геометрической бесконечности и объясняется сильное воздействие на зрителя «математических» работ Эшера. Да и вообще, сильно развитое чувство бесконечности окружающего пространства, присутствующее в работах многих крупных художников, не имеющих специального математического образования, коренится в том обстоятельстве, что каждый из них создавал свои приемы изображения бесконечности «конечными средствами». Ведь на полотне можно изобразить лишь иллюзию бесконечности, но не саму бесконечность, и тот, кому удается лучше всего «обмануть зрителя», достигает наибольшего эффекта. Поэтому-то, начиная с эпохи Возрождения, многие живописцы серьезно изучали не только теорию перспективы, но и более глубокие математические конструкции, пытаясь проникнуть за границы, которые ставит конечность нашего «уютного мира».

В заключение отмечу, что в современной математике есть много понятий таких же глубоких, как понятие бесконечности, и заслуживающих того, чтобы каждому из них был посвящен свой «рассказ».

...и в физике

М. ГЕРЦЕНШТЕЙН

Лирика и математика – что, казалось, может быть противоположнее. Но противоположности часто сходятся, а иногда лирики задают математикам глубокие вопросы. Как правило, математики (а вместе с ними и физики – ведь физики без математики сегодня нет и быть не может) от этих вопросов просто отмахиваются. Но иногда, спустя время, вдруг оказывается, что вопросы лириков имели такой подтекст, о котором ученые даже не подозревали.

В статье известного физика Е. Вигнера «Непостижимая эффективность математики в естественных науках» отмечается, что математика – это наука о хитроумных операциях, производимых по специально разработанным правилам над специально придуманными понятиями. Какое отношение это имеет к реальному миру? И где и когда строгое соблюдение правил, придуманных математиками, может привести физиков к ошибочному результату?

Возьмем, к примеру, мир целых вещественных чисел. Мы знаем, что к любому целому числу можно прибавить единичку и получить еще большее число. Если выполнять эту операцию n → ∞ раз, то получится бесконечность; то же самое получится, если удваивать число. Вместе с тем любое число можно разделить пополам, получив меньшее вещественное число, которое можно и дальше делить пополам, повторяя эту операцию хоть n → ∞ раз.

Но в реальном мире, увы, не удается совершить переход n → ∞. Например, если мы начнем удваивать отрезок длиной всего 1 см, то всего лишь после примерно 100 подобных операций получим отрезок, равный размеру всей нашей Вселенной, и его дальнейшее удвоение потеряет физический смысл. И наоборот, если мы начнем делить пополам отрезок длиной 1 см, то спустя всего около 50 таких операций получим отрезок, равный границе малых расстояний, к которым экспериментально приблизилась современная физика. Так почему же математика, пользующаяся явно невыполнимыми в реальном мире операциями с бесконечностями, все-таки дает физике правильные ответы на вопросы о том же реальном мире? В этом-то и заключается суть вопроса, поставленного Вигнером, если его отнести к проблеме бесконечности.

Лирику тут самое время позлорадствовать: если вы, физики, размышляя, прибегаете к невыполнимым в реальном мире операциям, то стоит ли удивляться, если в ваших теориях получаются бесконечности, а не разумные конечные величины? В оправдание можно сказать, что и в самой математике есть проблемы, связанные с бесконечностями.

А именно, до недавнего времени математики были искренне убеждены, что в их строжайшей науке, основанной на конечной системе аксиом, невозможно ничего ни прибавить, ни убавить. Ан нет, оказалось, что в рамках конечной системы аксиом могут существовать утверждения, истинность или ложность которых нельзя установить, и поэтому к математике можно добавлять сколь угодно много новых аксиом, и ее стройность от этого не нарушится...

Лирик, по-моему, зря «лягает» физиков, написав пусть даже в сослагательном наклонении: «...получается, что классическая механика вроде бы не описывает ничего». Любое описание природы есть относительная истина, всегда лишь приближенная к неизвестной нам истине абсолютной. Приближенная как вследствие причин принципиального характера (неточности уравнений классической механики), так и вследствие довольно прозаических причин (для практики излишняя точность описания подчас так же вредна, как и недостаточная).

Не понравились мне и слова о взглядах на мир «извне» и «изнутри». Мне кажется, что они излишне подчеркивают роль наблюдателя. Но в последнем виноваты и мы, физики: о роли наблюдателя слишком много говорят при изложении основ квантовой механики и теории относительности.

И в квантовой механике, и в теории относительности мы, прежде всего, должны как-то связать пространство и время с объектами, которыми занимаются математики – в простейшем случае с числами. Но как? Вакуум – не поверхность Земли, в нем не расставишь верстовые столбы! Конечно, можно оставить в покое какой-либо предмет и считать его точкой отсчета. Но если этот предмет движется по инерции с какой-то начальной скоростью, то за время, пока ведется наблюдение, точка отсчета может сместиться в неизвестном направлении на неизвестное расстояние. Что делать в этой ситуации? Как перебросить мост между физикой и математикой?

Поэтому в теории относительности и приходится говорить о координатной системе того или иного наблюдателя, не вдаваясь в подробности того, что это значит. Тем не менее именно такой подход позволил получить интересные выводы, подтвержденные экспериментально. Замечу, что некоторые особенности моста, соединяющего математику с реальностью, были выяснены сравнительно недавно: например, оказалось, что, невзирая на лоренцево сокращение, движущийся шар выглядит не эллипсоидом, а шаром, и это тоже удалось экспериментально подтвердить!

Волновые свойства электрона определяют характер спектра излучения атома, а ведь спектр излучения не зависит от того, будет ли его кто-либо наблюдать. Естественно, что если квант поглотится в одном месте, то он не может одновременно поглотиться где-либо еще. Если на пути кванта поместить экран с двумя отверстиями, то квант, как любая волна, будет проникать сразу через оба отверстия и давать интерференционную картину, которую удается наблюдать даже на космических расстояниях. Но если за отверстиями расположить приемники фотонов, то квант заставит сработать только один из них, спрашивается – как второй приемник узнал (со сверхсветовой скоростью, мгновенно!) о том, что сработал первый?

Тем не менее, и квантовая механика, и теория относительности – это теории без внутренних противоречий и, несмотря на то, что они противоречат так называемому «здравому смыслу», представляют собой твердо установленные относительные истины.

В завершение несколько слов о мирах-матрешках. Спору нет, сама по себе идея красива, и она часто обсуждается в серьезной физической литературе. Но, по моему мнению, она лишь свидетельствует о бедности фантазии авторов. Количественные изменения всегда приводят к изменениям качественным: матрешки не могут быть совершенно одинаковыми по своим свойствам, различаясь только размерами. Действительно, из этой поэтической гипотезы пока не удалось извлечь никаких конкретных следствий, доступных экспериментальной проверке, – скорее ее некоторые выводы противоречат уже известным фактам.

...Лирические мысли о бесконечности оказались достаточно глубокими и позволили поговорить о том, что находится на переднем крае современной науки. Надо надеяться, что этот разговор будет продолжен. Но, конечно, не до бесконечности.

 

Рассказы о бесконечности

Рассказ о бесконечности, сочиненный ночью на берегу теплого моря

Бездонный ночной небосвод и неумолчный шум прибоя обычно помимо воли заставляют задуматься о бесконечности. Бесконечности пространства и… Бесконечность, впрочем, не столько привлекает, сколько пугает. Право, мороз… Поначалу, дабы оградить мир, человек помещал плоскую Землю на трех китах или на трех слонах и придумал легенду о…