рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Построение доверительных интервалов.

Построение доверительных интервалов. - раздел Математика, Закон больших чисел. Неравенство Чебышева. Теоремы Чебышева и Бернулли   1. Доверительный Интервал Для Оценки Математического Ожидания...

 

1. Доверительный интервал для оценки математического ожидания нормального распределения при известной дисперсии.

Пусть исследуемая случайная величина Х распределена по нормальному закону с известным средним квадратическим σ, и требуется по значению выборочного среднего оценить ее математическое ожидание а. Будем рассматривать выборочное среднее как случайную величину а значения вариант выборки х1, х2,…, хп как одинаково распределенные независимые случайные величины Х1, Х2,…, Хп, каждая из которых имеет математическое ожидание а и среднее квадратическое отклонение σ. При этом М() = а, (используем свойства математического ожидания и дисперсии суммы независимых случайных величин). Оценим вероятность выполнения неравенства . Применим формулу для вероятности попадания нормально распределенной случайной величины в заданный интервал:

р () = 2Ф. Тогда , с учетом того, что , р () = 2Ф=

=2Ф( t ), где . Отсюда , и предыдущее равенство можно переписать так:

. (18.1)

Итак, значение математического ожидания а с вероятностью (надежностью) γ попадает в интервал , где значение t определяется из таблиц для функции Лапласа так, чтобы выполнялось равенство 2Ф(t) = γ.

 

Пример. Найдем доверительный интервал для математического ожидания нормально распреде-ленной случайной величины, если объем выборки п = 49, σ = 1,4, а доверительная вероятность γ = 0,9.

Определим t, при котором Ф(t) = 0,9:2 = 0,45: t = 1,645. Тогда

, или 2,471 < a < 3,129. Найден доверительный интервал, в который попадает а с надежностью 0,9.

 

2. Доверительный интервал для оценки математического ожидания нормального распределения при неизвестной дисперсии.

Если известно, что исследуемая случайная величина Х распределена по нормальному закону с неизвестным средним квадратическим отклонением, то для поиска доверительного интервала для ее математического ожидания построим новую случайную величину

, (18.2)

где - выборочное среднее, s – исправленная дисперсия, п – объем выборки. Эта случайная величина, возможные значения которой будем обозначать t, имеет распределение Стьюдента (см. лекцию 12) с k = n – 1 степенями свободы.

Поскольку плотность распределения Стьюдента , где , явным образом не зависит от а и σ, можно задать вероятность ее попадания в некоторый интервал (- tγ , tγ ), учитывая четность плотности распределения, следующим образом: . Отсюда получаем:

(18.3)

Таким образом, получен доверительный интервал для а, где tγ можно найти по соответствую-щей таблице при заданных п и γ.

Пример. Пусть объем выборки п = 25, = 3, s = 1,5. Найдем доверительный интервал для а при γ = 0,99. Из таблицы находим, что tγ (п = 25, γ = 0,99) = 2,797. Тогда , или 2,161< a < 3,839 – доверительный интервал, в который попадает а с вероятностью 0,99.

 

3. Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения.

Будем искать для среднего квадратического отклонения нормально распределенной случайной величины доверительный интервал вида (s – δ, s +δ), где s – исправленное выборочное среднее квадратическое отклонение, а для δ выполняется условие: p ( |σ – s| < δ ) = γ.

Запишем это неравенство в виде:или, обозначив ,

. (18.4)

Рассмотрим случайную величину χ, определяемую по формуле

,

которая распределена по закону «хи-квадрат» с п-1 степенями свободы (см. лекцию 12). Плотность ее распределения

не зависит от оцениваемого параметра σ, а зависит только от объема выборки п. Преобразуем неравенство (18.4) так, чтобы оно приняло вид χ1 < χ < χ2. Вероятность выполнения этого неравенства равна доверительной вероятности γ, следовательно, Предполо-жим, что q < 1, тогда неравенство (18.4) можно записать так:

,

или, после умножения на , . Следовательно, . Тогда Существуют таблицы для распределения «хи-квадрат», из которых можно найти q по заданным п и γ, не решая этого уравнения. Таким образом, вычислив по выборке значение s и определив по таблице значение q, можно найти доверительный интервал (18.4), в который значение σ попадает с заданной вероятностью γ.

 

Замечание. Если q > 1, то с учетом условия σ > 0 доверительный интервал для σ будет иметь границы

. (18.5)

Пример.

Пусть п = 20, s = 1,3. Найдем доверительный интервал для σ при заданной надежности γ = 0,95. Из соответствующей таблицы находим q (n = 20, γ = 0,95 ) = 0,37. Следовательно, границы доверительного интервала: 1,3(1-0,37) = 0,819 и 1,3(1+0,37) = 1,781. Итак, 0,819 < σ < 1,781 с вероятностью 0,95.

– Конец работы –

Эта тема принадлежит разделу:

Закон больших чисел. Неравенство Чебышева. Теоремы Чебышева и Бернулли

На сайте allrefs.net читайте: "Закон больших чисел. Неравенство Чебышева. Теоремы Чебышева и Бернулли"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Построение доверительных интервалов.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Закон больших чисел. Неравенство Чебышева. Теоремы Чебышева и Бернулли.
Изучение статистических закономерностей позволило установить, что при некоторых условиях суммарное поведение большого количества случайных величин почти утрачи-вает случайный характер и становится

Неравенство Чебышева.
Неравенство Чебышева, используемое для доказательства дальнейших теорем, справед-ливо как для непрерывных, так и для дискретных случайных величин. Докажем его для дискретных случайных величин.

Теоремы Чебышева и Бернулли.
Теорема 13.2 (теорема Чебышева). Если Х1, Х2,…, Хп – попарно независимые случайные величины, дисперсии которых равномерно

Теорема Бернулли.
Теорема 13.3 (теорема Бернулли). Если в каждом из п независимых опытов вероятность р появления события А постоянна, то при достаточно большом числе испытан

Центральная предельная теорема Ляпунова. Предельная теорема Муавра-Лапласа.
Закон больших чисел не исследует вид предельного закона распределения суммы случайных величин. Этот вопрос рассмотрен в группе теорем, называемых центральной предельной теоремой. О

Полигон частот. Выборочная функция распределения и гистограмма.
Для наглядного представления о поведении исследуемой случайной величины в выборке можно строить различные графики. Один из них – полигон частот: ломаная, отрезки которой соединяют

Двумерного случайного вектора.
  При статистическом исследовании двумерных случайных величин основной задачей является обычно выявление связи между составляющими. Двумерная выборка представляет собой набор

Способы построения оценок.
1. Метод наибольшего правдоподобия.   Пусть Х – дискретная случайная величина, которая в результате п испытаний приняла значения х1, х

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги