рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Степенные ряды. Радиус сходимости. Непрерывность суммы. Почленное интегрирование и дифференцирование

Степенные ряды. Радиус сходимости. Непрерывность суммы. Почленное интегрирование и дифференцирование - раздел Математика, Математический анализ Важный Частный Случай Функциональных Рядов Представляют Собой Степенные Ря...

Важный частный случай функциональных рядов представляют собой степенные ряды, т.е. ряды вида или, в более общем случае, . Поскольку при замене ряд переходит в ряд , достаточно рассмотреть эти последние ряды.

Теорема 1. Если степенной ряд сходится в точке , то он сходится абсолютно для любого значения такого, что .

Доказательство. Поскольку - сходится, . Следовательно, . (Действительно, взяв , получим, что при . Тогда в качестве можно взять наибольшее из конечного набора чисел ). Тогда . Так как , прогрессия сходится. Значит, по первой теореме о сравнении, сходится ряд , т.е. исходный ряд абсолютно сходится.

Эта теорема позволяет выяснить структуру множества, на котором сходится степенной ряд.

Во-первых, очевидно, что любой степенной ряд сходится в точке . Кроме того, есть ряды, которые сходятся только в этой точке, например, ряд .

Если же ряд сходится в точках, отличных от , то возможны два случая.

В первом из них множество чисел таких, что ряд сходится в точке , неограничено сверху. Тогда ряд абсолютно сходится на всей числовой прямой, т.к. выберем так, чтобы, во-первых, и, во-вторых, ряд сходился. Тогда, по теореме 1, ряд абсолютно сходится.

Во втором случае множество чисел таких, что ряд сходится, ограничено сверху. Обозначим через точную верхнюю грань этого множества. Число называется радиусом сходимости ряда. Из определения следует, что:

1. Если , то ряд абсолютно сходится;

2. Если , то ряд расходится.

В случае, когда ряд сходится на всей числовой прямой , полагают .

В точках общего утверждения о сходимости сделать нельзя (т.е. бывают ряды, сходящиеся в обеих этих точках, бывают – сходящиеся лишь в одной из них, бывают – расходящиеся в обеих точках. Примеры будут приведены ниже).

Найдем формулы, с помощью которых можно вычислить - радиус сходимости степенного ряда. Рассмотрим ряд . Применим к его исследованию признак Даламбера. . Если существует , и если , то ряд сходится. Если же , то, начиная с некоторого места, и общий член ряда не стремится к 0, но тогда и общий член ряда не стремится к 0 и ряд расходится.

Иными словами, ряд сходится при и расходится при . Таким образом, число представляет собой радиус сходимости степенного ряда. (Если , то при всех и ряд сходится на всей числовой прямой, что обозначается равенством ).

Дадим другую формулу для радиуса сходимости. Применим к рассматриваемому ряду признак Коши. . Пусть существует . Тогда, как и выше, при ряд сходится, а при - расходится. Поэтому (при , разумеется, ).

Рассмотрим примеры.

Пример 1. . Ряд абсолютно сходится на всей числовой прямой.

Пример 2. . В точках ряд, очевидно, расходится.

Пример 3. . В точке сходится по теореме Лейбница. В точке гармонический ряд расходится.

Пример 4. . В точках получается условно сходящийся ряд .

Пример 5. . . В точках имеем ряд , который абсолютно сходится.

Теорема. Степенной ряд представляет собой функцию, непрерывную на , где - радиус сходимости ряда.

– Конец работы –

Эта тема принадлежит разделу:

Математический анализ

На сайте allrefs.net читайте: "Математический анализ"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Степенные ряды. Радиус сходимости. Непрерывность суммы. Почленное интегрирование и дифференцирование

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Числовые ряды. Критерий Коши сходимости. Свойства сходящихся рядов
Пусть - последовательность чисел. Рассмотрим величины (1).

Доказательство.
сходится Þ сходится . Но

Ряды с неотрицательными членами. Теоремы сравнения. Признаки Даламбера, Коши, Гаусса
Если известно, что все члены ряда имеют, начиная с некоторого номера, постоянный знак, то исследовать его сходимость проще, чем

Доказательство.
. Пусть . Тогда

Абсолютная сходимость. Свойства абсолютно сходящихся рядов
Определение. Абсолютно сходящимся рядом называется сходящийся ряд , для которого сходится и ряд

Условная сходимость. Теорема Лейбница
Существуют также условно сходящиеся ряды. Простейшим примером служит знакочередующийся ряд . Он не является абсолютно схо

Равномерная сходимость функциональной последовательности, ряда. Признак Вейерштрасса
Пусть задана последовательность функций , определенных на множестве

Без доказательства.
Из этой теоремы сразу следует критерий Коши равномерной сходимости функционального ряда: равномерно сходится на

Непрерывность суммы равномерно сходящегося ряда из непрерывных функций. Почленное интегрирование и дифференцирование ряда
Теорема. Пусть на . Пусть

Доказательство.
Лемма. Пусть . Тогда сходится на мн

Разложение элементарных функций в степенные ряды
Разложение . Лемма. Если для любого отрезка

Ортонормированные системы функций. Обобщенные ряды Фурье. Тригонометрические ряды Фурье. Теорема сходимости
Понятие об ортогональных системах функций. Начнем с определения ортогональных функций. Функции называют

Линейное дифференциальное уравнение 1-го порядка.
Пример. Разберем пример: . Решим сначала вспомогательное уравнение

Линейное дифференциальное уравнение n-ного порядка. Свойства линейного однородного дифференциального уравнения
Рассмотрим дифференциальное уравнение (1), где - функции

Линейная зависимость функций. Определитель Вронского
Перейдем к более глубокому изучению свойств векторного пространства решений уравнения (2). Мы установим ниже, что оно имеет раз

Фундаментальная система решений линейного однородного уравнения
Определение. Любые линейно независимых решений линейного однородного дифференциального уравнения

Линейное неоднородное уравнение. Принцип суперпозиции
Теорема 3. Пусть - решение уравнения

Метод вариации постоянных
Вернемся к неоднородному уравнению (1). Предположим, что мы можем найти фундаментальную систему решений

Линейное однородное дифференциальное уравнение с постоянными коэффициентами. Характеристическое уравнение. Общее решение
Для уравнений (1), у которых (2), где

Метод неопределенных коэффициентов для нахождения частного решения линейного неоднородного дифференциального уравнения с постоянными коэффициентами
Согласно общей теории линейных дифференциальных уравнений, для решения уравнения (1) достаточно знать фундаментальную систему

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги