рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Линейная зависимость функций. Определитель Вронского

Линейная зависимость функций. Определитель Вронского - раздел Математика, Математический анализ Перейдем К Более Глубокому Изучению Свойств Векторного Пространства Решений У...

Перейдем к более глубокому изучению свойств векторного пространства решений уравнения (2). Мы установим ниже, что оно имеет размерность .

Определение. Пусть - функции, имеющие все производные до порядка включительно. Определителем Вронского функций называется величина (3).

Определение. Пусть определены ны интервале . Мы назовем их линейно зависимыми, если существуют постоянные , не все равные 0, такие, что для всех (4).

Функции, которые не являются линейно зависимыми, называются линейно независимыми. Линейная независимость означает, что из равенства (4) следует, что .

Теорема 5. Если - линейно зависимы и имеют производные до порядка включительно, то .

Доказательство. По условию, существуют не все равные 0 числа такие, что на выполняется тождество (5). Взяв производную от обеих частей, получим: (6). Аналогично, , (7) (8).

Рассмотрим произвольное . Равенства (5) – (8) можно рассматривать как систему линейных однородных уравнений относительно неизвестных . Поскольку эта система имеет нетривиальное решение (это означает, что не все равны 0), ее определитель должен быть равен 0, т.е. .

Обратная теорема в общем случае неверна. Рассмотрим, например, функции , для которых и их определитель Вронского тождественно равен 0.

Однако если , то при любом получаем , откуда , а при любом получаем , откуда . Поэтому функции и линейно независимы.

Тем не менее, верна следующая важная теорема.

Теорема 6. Если являются решением уравнения (2) и в некоторой точке , то линейно зависимы на (и, следовательно, ).

Доказательство. Рассмотрим систему линейных уравнений относительно неизвестных : (9). Ее определитель равен . По условию, . Значит, система (9) имеет нетривиальное решение . Рассмотрим функцию . По теореме 1, является решением уравнения (2). Равенства (9) можно рассматривать как условия задачи Коши, , которая, по теореме 1, имеет единственное решение. Вместе с тем, функция также удовлетворяет уравнению (2) и условиям (10). Ввиду единственности, . Таким образом, существуют не все равные 0 постоянные такие, что . Поэтому - линейно зависимы на . Следовательно, по теореме 5, на .

– Конец работы –

Эта тема принадлежит разделу:

Математический анализ

На сайте allrefs.net читайте: "Математический анализ"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Линейная зависимость функций. Определитель Вронского

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Числовые ряды. Критерий Коши сходимости. Свойства сходящихся рядов
Пусть - последовательность чисел. Рассмотрим величины (1).

Доказательство.
сходится Þ сходится . Но

Ряды с неотрицательными членами. Теоремы сравнения. Признаки Даламбера, Коши, Гаусса
Если известно, что все члены ряда имеют, начиная с некоторого номера, постоянный знак, то исследовать его сходимость проще, чем

Доказательство.
. Пусть . Тогда

Абсолютная сходимость. Свойства абсолютно сходящихся рядов
Определение. Абсолютно сходящимся рядом называется сходящийся ряд , для которого сходится и ряд

Условная сходимость. Теорема Лейбница
Существуют также условно сходящиеся ряды. Простейшим примером служит знакочередующийся ряд . Он не является абсолютно схо

Равномерная сходимость функциональной последовательности, ряда. Признак Вейерштрасса
Пусть задана последовательность функций , определенных на множестве

Без доказательства.
Из этой теоремы сразу следует критерий Коши равномерной сходимости функционального ряда: равномерно сходится на

Непрерывность суммы равномерно сходящегося ряда из непрерывных функций. Почленное интегрирование и дифференцирование ряда
Теорема. Пусть на . Пусть

Степенные ряды. Радиус сходимости. Непрерывность суммы. Почленное интегрирование и дифференцирование
Важный частный случай функциональных рядов представляют собой степенные ряды, т.е. ряды вида или, в более общем случае,

Доказательство.
Лемма. Пусть . Тогда сходится на мн

Разложение элементарных функций в степенные ряды
Разложение . Лемма. Если для любого отрезка

Ортонормированные системы функций. Обобщенные ряды Фурье. Тригонометрические ряды Фурье. Теорема сходимости
Понятие об ортогональных системах функций. Начнем с определения ортогональных функций. Функции называют

Линейное дифференциальное уравнение 1-го порядка.
Пример. Разберем пример: . Решим сначала вспомогательное уравнение

Линейное дифференциальное уравнение n-ного порядка. Свойства линейного однородного дифференциального уравнения
Рассмотрим дифференциальное уравнение (1), где - функции

Фундаментальная система решений линейного однородного уравнения
Определение. Любые линейно независимых решений линейного однородного дифференциального уравнения

Линейное неоднородное уравнение. Принцип суперпозиции
Теорема 3. Пусть - решение уравнения

Метод вариации постоянных
Вернемся к неоднородному уравнению (1). Предположим, что мы можем найти фундаментальную систему решений

Линейное однородное дифференциальное уравнение с постоянными коэффициентами. Характеристическое уравнение. Общее решение
Для уравнений (1), у которых (2), где

Метод неопределенных коэффициентов для нахождения частного решения линейного неоднородного дифференциального уравнения с постоянными коэффициентами
Согласно общей теории линейных дифференциальных уравнений, для решения уравнения (1) достаточно знать фундаментальную систему

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги