рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Метод неопределенных коэффициентов для нахождения частного решения линейного неоднородного дифференциального уравнения с постоянными коэффициентами

Метод неопределенных коэффициентов для нахождения частного решения линейного неоднородного дифференциального уравнения с постоянными коэффициентами - раздел Математика, Математический анализ Согласно Общей Теории Линейных Дифференциальных Уравнений, Для Решения Уравне...

Согласно общей теории линейных дифференциальных уравнений, для решения уравнения (1) достаточно знать фундаментальную систему решений однородного уравнения (2) и найти хотя бы одно решение неоднородного уравнения. Тогда любое решение неоднородного уравнения имеет вид: , где - произвольные постоянные.

В случае уравнения с постоянными коэффициентами мы указали способы нахождения его фундаментальной системы решений. Используя метод вариации постоянных, можно теперь найти решение и неоднородного уравнения. Однако есть важные частные случаи, когда решение неоднородного уравнения можно отыскать значительно проще.

Пусть (3), где - многочлены, - действительные числа. Согласно принципу суперпозиции, достаточно уметь решать уравнение вида (4). Тогда, решив каждое из уравнений и просуммировав полученные решения, мы получим решение исходного уравнения (3).

Решения уравнения (4) имеют различный вид в зависимости от того, является или нет число корнем характеристического уравнения для однородного уравнения (2).

В первом случае не является корнем характеристического уравнения. Тогда решение уравнения (4) можно искать в виде , где - многочлен той же степени, что и многочлен .

Во втором случае, если является корнем характеристического уравнения (2) кратности , решение уравнения (4) следует искать в виде , где - многочлен той же степени, что и .

Эти два случая можно объединить в один, если считать, что , не являющееся корнем характеристического уравнения, имеет нулевую кратность. Тогда решение уравнения (4) следует искать в виде , , где - кратность в характеристическом уравнении.

Если в правую часть уравнения (1) входят слагаемые вида (5), где - многочлены, то можно искать решение уравнений (6) в виде , где - кратность корня в характеристическом многочлене однородного уравнения (, если - не корень характеристического уравнения), а степень каждого из многочленов равна наивысшей из степеней многочленов .

Когда слагаемых вида (5) несколько, то мы решаем соответствующие им уравнения (6) и применяем затем принцип суперпозиции.

Рассмотрим важный пример.

Пример. Уравнение упругих колебаний без сопротивления при наличии возмущающей периодической силы: , - постоянные.

Корни характеристичского уравнения равны . Поэтому фундаментальная система решений однородного уравнения состоит из функций .

Если , то решение исходного уравнения ищем в виде . Подставляем его в уравнение: , , откуда , или , откуда . Тем самым, общее решение уравнения имеет вид . Здесь - амплитуда свободных колебаний, - частота свободных колебаний, - амплитуда вынужденных колебаний с частотой . Чем ближе величина , тем больше амплитуда вынужденных колебаний.

Если же , то решение, согласно указанным выше правилам, следует искать в виде . Тогда . Подставим в уравнение: , или . Итак, общее решение уравнения имеет вид: . При амплитуда колебаний возрастает неограниченно. Это – явление резонанса.

 

– Конец работы –

Эта тема принадлежит разделу:

Математический анализ

На сайте allrefs.net читайте: "Математический анализ"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Метод неопределенных коэффициентов для нахождения частного решения линейного неоднородного дифференциального уравнения с постоянными коэффициентами

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Числовые ряды. Критерий Коши сходимости. Свойства сходящихся рядов
Пусть - последовательность чисел. Рассмотрим величины (1).

Доказательство.
сходится Þ сходится . Но

Ряды с неотрицательными членами. Теоремы сравнения. Признаки Даламбера, Коши, Гаусса
Если известно, что все члены ряда имеют, начиная с некоторого номера, постоянный знак, то исследовать его сходимость проще, чем

Доказательство.
. Пусть . Тогда

Абсолютная сходимость. Свойства абсолютно сходящихся рядов
Определение. Абсолютно сходящимся рядом называется сходящийся ряд , для которого сходится и ряд

Условная сходимость. Теорема Лейбница
Существуют также условно сходящиеся ряды. Простейшим примером служит знакочередующийся ряд . Он не является абсолютно схо

Равномерная сходимость функциональной последовательности, ряда. Признак Вейерштрасса
Пусть задана последовательность функций , определенных на множестве

Без доказательства.
Из этой теоремы сразу следует критерий Коши равномерной сходимости функционального ряда: равномерно сходится на

Непрерывность суммы равномерно сходящегося ряда из непрерывных функций. Почленное интегрирование и дифференцирование ряда
Теорема. Пусть на . Пусть

Степенные ряды. Радиус сходимости. Непрерывность суммы. Почленное интегрирование и дифференцирование
Важный частный случай функциональных рядов представляют собой степенные ряды, т.е. ряды вида или, в более общем случае,

Доказательство.
Лемма. Пусть . Тогда сходится на мн

Разложение элементарных функций в степенные ряды
Разложение . Лемма. Если для любого отрезка

Ортонормированные системы функций. Обобщенные ряды Фурье. Тригонометрические ряды Фурье. Теорема сходимости
Понятие об ортогональных системах функций. Начнем с определения ортогональных функций. Функции называют

Линейное дифференциальное уравнение 1-го порядка.
Пример. Разберем пример: . Решим сначала вспомогательное уравнение

Линейное дифференциальное уравнение n-ного порядка. Свойства линейного однородного дифференциального уравнения
Рассмотрим дифференциальное уравнение (1), где - функции

Линейная зависимость функций. Определитель Вронского
Перейдем к более глубокому изучению свойств векторного пространства решений уравнения (2). Мы установим ниже, что оно имеет раз

Фундаментальная система решений линейного однородного уравнения
Определение. Любые линейно независимых решений линейного однородного дифференциального уравнения

Линейное неоднородное уравнение. Принцип суперпозиции
Теорема 3. Пусть - решение уравнения

Метод вариации постоянных
Вернемся к неоднородному уравнению (1). Предположим, что мы можем найти фундаментальную систему решений

Линейное однородное дифференциальное уравнение с постоянными коэффициентами. Характеристическое уравнение. Общее решение
Для уравнений (1), у которых (2), где

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги