рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Дифференцирование интеграла, зависящего от параметра.

Дифференцирование интеграла, зависящего от параметра. - раздел Математика, Неопределенный интеграл функции комплексной переменной Из Курса Действительного Анализа Известно, Что Интеграл, Зависящий От Парамет...

Из курса действительного анализа известно, что интеграл, зависящий от параметра, можно дифференцировать под знаком интеграла, если производная подынтегральной функции по параметру непрерывна.

Пусть обладает следующими свойствами:

1. Û

2. , по совокупности аргументов Û.

При этих условиях существует

Докажем, что , причем производную можно искать дифференцируя под знаком интеграла.

Из курса действительного анализа известно, что действительный интеграл, зависящий от параметра, можно дифференцировать под знаком интеграла, если производная подынтегральной функции по параметру непрерывна. Поэтому

Кроме того, Þ, причем

,

т.е. производную можно искать, дифференцируя под знаком интеграла.

 

– Конец работы –

Эта тема принадлежит разделу:

Неопределенный интеграл функции комплексной переменной

На сайте allrefs.net читайте: "Неопределенный интеграл функции комплексной переменной"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Дифференцирование интеграла, зависящего от параметра.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Неопределенный интеграл функции комплексной переменной.
Если g- односвязная и f(z)ÎC¥(g), то для "z1, z2Îg не

Интегральная формула Коши.
Пусть f(z)Î C¥(). Выразим f(z0) (z0Îg) через значения f(z)

Формула среднего значения.
Пусть z0- некоторая внутренняя точка односвязной области g. Возьмем окружность CR с центром в z0 и радиусом R, CR &Igr

Существование производных всех порядков в области аналитичности функции комплексной переменной.
Пусть f(z)Î C¥(). Тогда значения f(z) во всех внутренних точках области (zÎg) можно в

Теоремы Мореры и Лиувилля.
  Теорема Мореры. Если f(z)ÎC(g), g-односвязная и для " замкнутого gÌg: , то

Числовые ряды.
Пусть дана последовательность {an} комплексных чисел. Определение. Бесконечная сумма членов последовательности называется

Свойства сходящихся рядов.
Необходимый признак сходимости ряда. Если сходится, то an®0 . Доказательство. У сходящегося

Критерий Коши сходимости ряда.
  Для числовых последовательностей существует необходимый и достаточный признак сходимости. {Sn} сходится ó "e>0 $N(e): |Sn+m-S

Достаточными признаками сходимости рядов с положительными членами являются признаки Даламбера и Коши.
Признак Даламбера. Пусть - ряд с положительными членами an>0 и $

Формула Стирлинга.
Для успешного применения радиального признака Коши полезно знать асимптотическую формулу для n!, выведенную Стирлингом при

Абсолютно и условно сходящиеся ряды.
Примеры. - сходится абсолютно. - сходится условно. Ра

Признаки Дирихле и Абеля для рядов с произвольными комплексными членами.
Докажем некоторые достаточные признаки сходимости рядов. Предварительно рассмотрим одно преобразование сумм

Ряды аналитических функций.
1. Понятие функционального ряда.Пусть дана последовательность {u k(z)} функций, z Î g. Выражение

Теорема Абеля.
Теорема Абеля. Если степенной ряд Scn(z-z0)n сходится в точке z1 ¹ z0 , то он абсолютно сходитс

Теорема Тейлора.
Теорема Тейлора. Если f(z)ÎC¥(|z-z0|<R), то $! степенной ряд Scn(z-z0)

Ряды Тейлора элементарных функций.
1. (Воспользоваться Þ " k Ck=1/

Понятие правильной точки.
Пусть f(z) задана в g, за исключением может быть некоторых изолированных точек. Точка z0Îg называется правильной точкой функци

Нули аналитической функции.
Определение. Пусть f(z)ÎC¥(g); f(z0)=0, z0Îg, тогда z0 - нуль аналитической ф

Если бы все точки границы были бы правильными, то
"x: |x-z0|=R- граница круга сходимости $r(x)>0: "z |x-z|<r(x), т.е. з

Кольцо сходимости ряда Лорана.
Определение. Рядом Лорана называется степенной ряд вида (суммирование ведется и по положительным, и по отрицательным степ

Теорема о разложении функции комплексной переменной, аналитической в круговом кольце в ряд Лорана.
Теорема (теорема Лорана) Если f(z)ÎC¥(R2<|z-z0|<R1), то она однозн

Ряд Лорана в окрестности бесконечно удаленной точки.
Определение. Степенной ряд вида , сходящийся во круговом кольце

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги