рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Вероятности случайных событий

Вероятности случайных событий - раздел Математика, Математическая cтатистика Итак, Основным “Показателем” Любого События (Факта) А Является Численная Вели...

Итак, основным “показателем” любого события (факта) А является численная величина его вероятности P(A), которая может принимать значения в диапазоне [0…1] - в зависимости от того, насколько это событие случайно. Такое, смысловое, определение вероятности не дает, однако, возможности указать путь для вычисления ее значения.

Поэтому необходимо иметь и другое, отвечающее требованиям практической работы, определение термина “вероятность”. Это определение можно дать на основании житейского опыта и обычного здравого смысла.

Если мы интересуемся событиемA, то, скорее всего, можем наблюдать, фиксировать факты его появления. Потребность в понятии вероятности и ее вычисления возникнет, очевидно, только тогда, когда мы наблюдаем это событие не каждый раз, либо осознаем, что оно может произойти, а может не произойти. И в том и другом случае полезно использовать понятие частоты появления события fA - как отношения числа случаев его появления (благоприятных исходов или частостей) к общему числу наблюдений.

Интуиция подсказывает, что частота наступления случайного события зависит не только от степени случайности самого события. Если мы наблюдали за событием всего пять раз и в трех случаях это событие произошло, то мало кто примет значение вероятности такого события равным 0.6 или 60 %. Скорее всего, особенно в случаях необходимости принятия каких–то важных, дорогостоящих решений любой из нас продолжит наблюдения. Здравый смысл подсказывает нам, что уж если в 100 наблюдениях событие произошло 14 раз, то мы можем с куда большей уверенностью полагать его вероятность равной 14 % .

Таким образом, мы (конечно же, - не первые) сформулировали второе определение понятия вероятности события - как предела, к которому стремится частота наблюдения за событием при непрерывном увеличении числа наблюдений. Теория вероятностей, специальный раздел математики, доказывает существование такого предела и сходимость частоты к вероятности при стремлении числа наблюдений к бесконечности. Это положение носит название центральной предельной теоремы или закона больших чисел.

Итак, первый ответ на вопрос - как найти вероятность события, у нас уже есть. Надо проводить эксперимент и устанавливать частоту наблюдений, которая тем точнее даст нам вероятность, чем больше наблюдений мы имеем.

Ну, а как быть, если эксперимент невозможен (дорог, опасен или меняет суть процессов, которые нас интересуют)? Иными словами, нет ли другого пути вычисления вероятности событий, без проведения экспериментов?

Такой путь есть, хотя, как ни парадоксально, он все равно основан на опыте, опыте жизни, опыте логических рассуждений. Вряд ли кто либо будет производить эксперименты, подбрасывая несколько сотен или тысячу раз симметричную монетку, чтобы выяснить вероятность появления герба при одном бросании! Вы будете совершенно правы, если без эксперимента найдете вероятность выпадения цифры 6 на симметричной игральной кости и т.д., и т.п.

Этот путь называется статистическим моделированием – использованием схемы случайных событий и с успехом используется во многих приложениях теоретической и прикладной статистики. Продемонстрируем этот путь, рассматривая вопрос о вероятностях случайных величин дальше. Обозначим величину вероятности того, что событие A не произойдет. Тогда из определения вероятности через частоту наступления события следует, что

P(A)+ = 1, {1–1}

 

что полезно читать так - вероятность того, что событие произойдет или не произойдет, равна 100 %, поскольку третьего варианта попросту нет.

 

Подобные логические рассуждения приведут нас к более общей формуле - сложения вероятностей. Пусть некоторое случайное событие может произойти только в одном из 5 вариантов, т.е. пусть имеется система из трех несовместимых событий A, B и C .

 

Тогда очевидно, что:

P(A) + P(B) + P(C) = 1; {1–2} и столь же простые рассуждения приведут к выражению для вероятности наступления одного из двух несовместимых событий (например, A или B):

P(AÈB) = P(A) + P(B); {1–3} или одного из трех:

P(AÈBÈC) = P(A) + P(B) + P(C); {1-4} и так далее.

Рассмотрим чуть более сложный пример. Пусть нам надо найти вероятность события C, заключающегося в том, что при подбрасывании двух разных монет мы получим герб на первой (событие A) и на второй (событие B). Здесь речь идет о совместном наступлении двух независимых событий, т.е. нас интересует вероятность P(C) = P(AÇ B).

И здесь метод построения схемы событий оказывается чудесным помощником - можно достаточно просто доказать, что

P(AÇB) =P(A)·P(B). {1-5} Конечно же, формулы {1-4} и {1-5} годятся для любого количества событий: лишь бы они были несовместными в первом случае и независимыми во втором.

Наконец, возникают ситуации, когда случайные события оказываются взаимно зависимыми. В этих случаях приходится различать условные вероятности:

P(A / B) – вероятность A при условии, что B уже произошло;

P(A / ) – вероятность A при условии, что B не произошло,

называя P(A) безусловной или полной вероятностью события A .

Выясним вначале связь безусловной вероятности события с условными. Так как событие A может произойти только в двух, взаимоисключающих вариантах, то, в соответствии с {1–3} получается, что

P(A) = P(A/B)·P(B) + P(A/)· P(). {1–6}

Вероятности P(A/B) и P(A/) часто называют апостериорными (“a posteriopri” – после того, как…), а безусловную вероятность P(A) – априорной (“a priori” – до того, как…).

Очевидно, что если первым считается событие B и оно уже произошло, то теперь наступление события A уже не зависит от B и поэтому вероятность того, что произойдут оба события составит

P(AÇB) = P(A/B)·P(B). {1–7} Так как события взаимозависимы, то можно повторить наши выводы и получить

P(B) = P(B/A)·P(A) + P(B/)·P(); {1–8}

а также P(AÇB) = P(B/A)·P(A). {1–9}

Мы доказали так называемую теорему Байеса

P(A/B)·P(B) = P(B/A)·P(B); {1–10} – весьма важное средство анализа, особенно в области проверки гипотез и решения вопросов управления на базе методов прикладной статистики.

Подведем некоторые итоги рассмотрения вопроса о вероятностях случайных событий. У нас имеются только две возможности узнать что либо о величине вероятности случайного события A:

· применить метод статистического моделирования - построить схему данного случайного события и (если у нас есть основания считать, что мы правильно ее строим) и найти значение вероятности прямым расчетом;

· применить метод статистического испытания - наблюдать за появлением события и затем по частоте его появления оценить вероятность.

На практике приходится использовать оба метода, поскольку очень редко можно быть абсолютно уверенным в примененной схеме события (недостаток метода моделирования) и столь же редко частота появления события достаточно быстро стабилизируется с ростом числа наблюдений (недостаток метода испытаний).

 

– Конец работы –

Эта тема принадлежит разделу:

Математическая cтатистика

На сайте allrefs.net читайте: "Математическая cтатистика"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Вероятности случайных событий

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные определения
Несмотря на многообразие используемых в литературе определений термина “статистика”, суть большинства из них сводится к тому, что статистикой чаще всего называют науку, изучающую методы сбора и

Шкалирование случайных величин
Как уже отмечалось, дискретной называют величину, которая может принимать одно из счетного множества так называемых “допустимых” значений. Примеров дискретных величин, у которых есть некоторая имен

Законы распределений дискретных случайных величин.
Пусть некоторая СВ является дискретной, т.е. может принимать лишь фиксированные (на некоторой шкале) значения X i. В этом случае ряд значений вероятностей P(X i)для

Односторонние и двухсторонние значения вероятностей
Если нам известен закон распределения СВ (пусть – дискретной), то в этом случае очень часто приходится решать задачи, по крайней мере, трех стандартных типов: · какова вероятность того, чт

Моменты распределений дискретных случайных величин.
Итак, закон распределения вероятностей дискретной СВ несет в себе всю информацию о ней и большего желать не приходится. Не будет лишним помнить, что этот закон (или просто – распределение

Распределения непрерывных случайных величин
До этого момента мы ограничивались только одной “разновидностью” СВ – дискретными, т.е. принимающими конечные, заранее оговоренные значения на любой из шкал Nom, Ord, Int или Rel . Но теор

Нормальное распределение
Первым, фундаментальным по значимости, является т.н. нормальный закон распределения непрерывной случайной величины X, для которой допустимым является любое действительное числовое значение.

Распределения выборочных значений параметров нормального распределения
Пусть у нас имеется некоторая непрерывная случайная величина X ,распределенная нормально с математическим ожиданием m и среднеквадратичным отклонением s. Если мы имеем n наблюдений

Парная корреляция
Прямое толкование термина "корреляция" — стохастическая, вероятная, возможная связь между двумя (парная) или несколькими (множественная) случайными величинами. Выше говорилось о

Множественная корреляция
В ряде случаев статистического анализа приходится решать вопрос о связях нескольких (более 2) СВ или вопрос о множественной корреляции. Пусть X, Y и Z – случайные величины, имеющие математ

Понятие статистической гипотезы
Как уже отмечалось, основным занятием статистика–прикладника является чаще всего решение вопроса о том, что и как можно извлечь из наблюдений над случайной величиной (выборочных её значений) для по

Критерии статистических гипотез
Если мы пытаемся решить некоторую статистическую задачу, то в большинстве случаев нам придется заниматься не столько математическими выкладками и числовыми расчетами, сколько принимать решение – ка

Ошибки при проверке статистических гипотез
    Рис.4–1   Выби

Оценка наблюдений при неизвестном законе распределения
Какова цель наблюдений над случайной величиной; для чего используются результаты наблюдений; где, как и для чего применить возможности теории вероятностей и прикладной статистики? Ответы на эти, пр

Оценка параметров нормального распределения
Нередки случаи, когда у нас есть некоторые основания считать интересующую нас СВ распределенной по нормальному закону. Существуют специальные методы проверки такой гипотезы по данным наблюдений, но

Оценка параметров дискретных распределений
В ряде случаев работы с некоторой дискретной СВ нам удается построить вероятностную схему событий, приводящих к изменению значений данной величины. Иными словами ­– закон распределения нам известен

Выборочные распределения на шкале Nom
Напомним, что случайная величина X, принимающая одно из n допустимых значений A, B, C и т.д. имеет номинальную шкалу тогда, когда для любой пары этих значений применимы только понятия “равно” или “

Случай многозначной случайной величины
Существует достаточно обширный класс задач со случайными величинами, распределенными на номинальной шкале с тремя и более допустимыми значениями. В таких задачах обычно используется все то

Методы вычисления моментов распределений
При вычислении моментов распределения случайных величин полезно использовать некоторые удобные (как для прямого расчета, так и для составления компьютерных программ) выражения.  

Алгоритмы простейших статистических расчетов
Несмотря на относительную простоту, статистические расчеты требуют значительных затрат времени, повышенного внимания и, связанного с этим риска ошибок. Кроме того, в большинстве случаев практики по

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги