рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Законы распределений дискретных случайных величин.

Законы распределений дискретных случайных величин. - раздел Математика, Математическая cтатистика Пусть Некоторая Св Является Дискретной, Т.е. Может Принимать Лишь Фиксированн...

Пусть некоторая СВ является дискретной, т.е. может принимать лишь фиксированные (на некоторой шкале) значения X i. В этом случае ряд значений вероятностей P(X i)для всех (i=1…n) допустимых значений этой величины называют её законом распределения.

В самом деле, - такой ряд содержит всю информацию о СВ, это максимум наших знаний о ней. Другое дело, - откуда мы можем получить эту информацию, как найти закон распределения? Попытаемся ответить на этот принципиально важный вопрос, используя уже рассмотренное понятие вероятности.

Точно также, как и для вероятности случайного события, для закона распределения СВ есть только два пути его отыскания. Либо мы строим схему случайного события и находим аналитическое выражение (формулу) вычисления вероятности (возможно, кто–то уже сделал или сделает это за нас!), либо придется использовать эксперимент и по частотам наблюдений делать какие–то предположения (выдвигать гипотезы) о законе распределения.

Заметим, что во втором случае нас будет ожидать новый вопрос, - а какова уверенность в том, что наша гипотеза верна? Какова, выражаясь языком статистики, вероятность ошибки при принятии гипотезы или при её отбрасывании?

Продемонстрируем первый путь отыскания закона распределения.

Пусть важной для нас случайной величиной является целое число, образуемое по следующему правилу: мы трижды бросаем симметричную монетку, выпадение герба считаем числом 1 (в противном случае 0) и после трех бросаний определяем сумму S.

Ясно, что эта сумма может принимать любое значение в диапазоне 0…3, но всё же - каковы вероятности P(S=0), P(S=1), P(S=2), P(S=3); что можно о них сказать, кроме очевидного вывода - их сумма равна 1?

Попробуем построить схему интересующих нас событий. Обозначим через p вероятность получить 1 в любом бросании, а через q=(1–p) вероятность получить 0. Сообразим, что всего комбинаций ровно 8 (или 23), а поскольку монетка симметрична, то вероятность получить любую комбинацию трех независимых событий (000,001,010…111) одна и та же: q3 = q2·p =…= p3 = 0.125 . Но если p # q , то варианты все тех же восьми комбинаций будут разными:

Таблица 1-1

Первое бросание
Второе бросание
Третье бросание
Сумма S
Вероятность P(S) q3 q2·p q2·p q·p2 q2·p q·p2 q·p2 p3

 

Запишем то, что уже знаем - сумма вероятностей последней строки должна быть равна единице:

p3 +3·qp2 + 3·q2·p + q3 = (p + q)3 = 1.

Перед нами обычный бином Ньютона 3-й степени, но оказывается - его слагаемые четко определяют вероятности значений случайной величины S !

Мы “открыли” закон распределения СВ, образуемой суммированием результатов n последовательных наблюдений, в каждом из которых может появиться либо 1 (с вероятностью p), либо 0 (с вероятностью 1– p).

Итог этого открытия достаточно скромен:

· возможны всего N = 2 n вариантов значений суммы;

· вероятности каждого из вариантов определяются элементами разложения по

степеням бинома (p + q) n ;

· такому распределению можно дать специальное название - биномиальное.

Конечно же, мы опоздали со своим открытием лет на 300, но, тем не менее, попытка отыскания закона распределения с помощью построения схемы событий оказалась вполне успешной.

В общем случае биномиальный закон распределения позволяет найти вероятность события S = k в виде

P(S=k)=·pk·(1– p)n-k, {2–1} где - т.н. биномиальные коэффициенты, отыскиваемые из известного “треугольника Паскаля” или по правилам комбинаторики - как число возможных сочетаний из n элементов по k штук в каждом:

= n·(n –1)· ...·(n – k + 1)/ (1·2· .... · k). {2–2}

Многие дискретные СВ позволяют построить схему событий для вычисления вероятности каждого из допустимых для данной случайной величины значений.

Конечно же, для каждого из таких, часто называемых "классическими", распределений уже давно эта работа проделана ­– широко известными и очень часто используемыми в прикладной статистике являются биномиальное и полиномиальное распределения, геометрическое и гипергеометрическое, распределение Паскаля и Пуассона и многие другие.

Для почти всех классических распределений немедленно строились и публиковались специальные статистические таблицы, уточняемые по мере увеличения точности расчетов. Без использования многих томов этих таблиц, без обучения правилам пользования ими последние два столетия практическое использование статистики было невозможно.

Сегодня положение изменилось – нет нужды хранить данные расчетов по формулам (как бы последние не были сложны!), время на использование закона распределения для практики сведено к минутам, а то и секундам.

Уже сейчас существует достаточное количество разнообразных пакетов прикладных компьютерных программ для этих целей. Кроме того, создание программы для работы с некоторым оригинальным, не описанным в классике распределением не представляет серьезных трудностей для программиста “средней руки”.

Приведем примеры нескольких распределений для дискретных СВ с описанием схемы событий и формулами вычисления вероятностей. Для удобства и наглядности будем полагать, что нам известна величина p – вероятность того, что вошедший в магазин посетитель окажется покупателем и обозначая (1– p) = q.

 

· Биномиальное распределение

Если X – число покупателей из общего числа n посетителей, то вероятность P(X= k) = ·pk·qn-k .

· Отрицательное биномиальное распределение (распределение Паскаля)

Пусть Y – число посетителей, достаточное для того, чтобы k из них оказались покупателями. Тогда вероятность того, что n–й посетитель окажется k–м покупателем составит P(Y=n)=·pk ·qn–k.

· Геометрическое распределение

Если Y – число посетителей, достаточное для того, чтобы один из них оказался

покупателем, то P(Y=1)= p ·qn–1.

· Распределение Пуассона

Если ваш магазин посещают довольно часто, но при этом весьма редко делают покупки, то вероятность k покупок в течение большого интервала времени, (например, – дня) составит P(Z=k) = lk ·Exp(-l) / k! , где l – особый показатель распределения, так называемый его параметр.

 

 

– Конец работы –

Эта тема принадлежит разделу:

Математическая cтатистика

На сайте allrefs.net читайте: "Математическая cтатистика"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Законы распределений дискретных случайных величин.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные определения
Несмотря на многообразие используемых в литературе определений термина “статистика”, суть большинства из них сводится к тому, что статистикой чаще всего называют науку, изучающую методы сбора и

Вероятности случайных событий
Итак, основным “показателем” любого события (факта) А является численная величина его вероятности P(A), которая может принимать значения в диапазоне [0…1] - в зависимости от того, насколько это соб

Шкалирование случайных величин
Как уже отмечалось, дискретной называют величину, которая может принимать одно из счетного множества так называемых “допустимых” значений. Примеров дискретных величин, у которых есть некоторая имен

Односторонние и двухсторонние значения вероятностей
Если нам известен закон распределения СВ (пусть – дискретной), то в этом случае очень часто приходится решать задачи, по крайней мере, трех стандартных типов: · какова вероятность того, чт

Моменты распределений дискретных случайных величин.
Итак, закон распределения вероятностей дискретной СВ несет в себе всю информацию о ней и большего желать не приходится. Не будет лишним помнить, что этот закон (или просто – распределение

Распределения непрерывных случайных величин
До этого момента мы ограничивались только одной “разновидностью” СВ – дискретными, т.е. принимающими конечные, заранее оговоренные значения на любой из шкал Nom, Ord, Int или Rel . Но теор

Нормальное распределение
Первым, фундаментальным по значимости, является т.н. нормальный закон распределения непрерывной случайной величины X, для которой допустимым является любое действительное числовое значение.

Распределения выборочных значений параметров нормального распределения
Пусть у нас имеется некоторая непрерывная случайная величина X ,распределенная нормально с математическим ожиданием m и среднеквадратичным отклонением s. Если мы имеем n наблюдений

Парная корреляция
Прямое толкование термина "корреляция" — стохастическая, вероятная, возможная связь между двумя (парная) или несколькими (множественная) случайными величинами. Выше говорилось о

Множественная корреляция
В ряде случаев статистического анализа приходится решать вопрос о связях нескольких (более 2) СВ или вопрос о множественной корреляции. Пусть X, Y и Z – случайные величины, имеющие математ

Понятие статистической гипотезы
Как уже отмечалось, основным занятием статистика–прикладника является чаще всего решение вопроса о том, что и как можно извлечь из наблюдений над случайной величиной (выборочных её значений) для по

Критерии статистических гипотез
Если мы пытаемся решить некоторую статистическую задачу, то в большинстве случаев нам придется заниматься не столько математическими выкладками и числовыми расчетами, сколько принимать решение – ка

Ошибки при проверке статистических гипотез
    Рис.4–1   Выби

Оценка наблюдений при неизвестном законе распределения
Какова цель наблюдений над случайной величиной; для чего используются результаты наблюдений; где, как и для чего применить возможности теории вероятностей и прикладной статистики? Ответы на эти, пр

Оценка параметров нормального распределения
Нередки случаи, когда у нас есть некоторые основания считать интересующую нас СВ распределенной по нормальному закону. Существуют специальные методы проверки такой гипотезы по данным наблюдений, но

Оценка параметров дискретных распределений
В ряде случаев работы с некоторой дискретной СВ нам удается построить вероятностную схему событий, приводящих к изменению значений данной величины. Иными словами ­– закон распределения нам известен

Выборочные распределения на шкале Nom
Напомним, что случайная величина X, принимающая одно из n допустимых значений A, B, C и т.д. имеет номинальную шкалу тогда, когда для любой пары этих значений применимы только понятия “равно” или “

Случай многозначной случайной величины
Существует достаточно обширный класс задач со случайными величинами, распределенными на номинальной шкале с тремя и более допустимыми значениями. В таких задачах обычно используется все то

Методы вычисления моментов распределений
При вычислении моментов распределения случайных величин полезно использовать некоторые удобные (как для прямого расчета, так и для составления компьютерных программ) выражения.  

Алгоритмы простейших статистических расчетов
Несмотря на относительную простоту, статистические расчеты требуют значительных затрат времени, повышенного внимания и, связанного с этим риска ошибок. Кроме того, в большинстве случаев практики по

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги