рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Дискретный вариационный ряд

Дискретный вариационный ряд - раздел Математика, Теория вероятности   Номер Интервала I Средне...

 

Номер интервала i Среднее значение интервала Относительная частота Выборочная оценка плотности вероятности
149,5 0,005 0,002
152,5
155,5 0,025 0,008
Окончание таблицы 7
158,5 0,035 0,012
161,5 0,105 0,035
164,5 0,19 0,063
167,5 0,195 0,065
170,5 0,19 0,063
173,5 0,105 0,035
176,5 0,075 0,025
179,5 0,04 0,013
182,5 0,015 0,005
185,5 0,015 0,005
188,5 0,005 0,002

 

 
 

Рис.1

 
 

Рис.2

 

На основании полученных выборочных данных необходимо сделать предположение, что изучаемая величина распределена по некоторому определённому закону. Для того чтобы проверить, согласуется ли это предположение с данными наблюдений, вычисляют частоты полученных в наблюдениях значений, т.е. находят теоретически сколько раз величина Х должна была принять каждое из наблюдавшихся значений, если она распределена по предполагаемому закону. Для этого находят выравнивающие (теоретические) частоты по формуле:

(7)

где n – число испытаний,

- вероятность наблюдаемого значения , вычисленная при допущении, что Х имеет предполагаемое распределение.

Эмпирические (полученные из таблицы) и выравнивающие частоты сравнивают, и при небольшом расхождении данных делают заключение о выбранном законе распределения.

Предположим, что случайная величина Х распределена нормально (см. комментарии к задаче № 4). В этом случае выравнивающие частоты находят по формуле:

(8)

где n-число испытаний,

h-длина частичного интервала,

-выборочное среднее квадратичное отклонение,

(- середина i – го частичного интервала)

– функция Лапласа (9)

Результаты вычислений отобразим в таблице №8.

Сравнение графиков (рис.2) наглядно показывает близость выравнивающих частот к наблюдавшимся и подтверждает правильность допущения о том, что обследуемый признак распределён нормально.

 

Таблица 8

Расчёт выравнивающих частот

 

   
149,5 152,5 155,5 158,5 161,5 164,5 167,5 170,5 173,5 176,5 179,5 182,5 185,5 188,5 -19,5 -16,5 -13,5 -10,5 -7,05 -4,05 -1,05 1,95 4,95 7,95 10,95 13,95 16,95 19,95 -3 -2,53 -2,06 -1,59 -1,11 -0,64 -0,17 0,31 0,78 1,25 1,73 2,2 2,67 3,15 0,004 0,02 0,048 0,11 0,22 0,33 0,396 0,38 0,3 0,18 0,09 0,04 0,011 0,003 0,42 1,55 4,54 10,68 20,37 31,0 37,48 36,0 28,0 17,34 8,44 3,37 1,06 0,26 0,05 0,01 0,025 0,055 0,1 0,155 0,185 0,18 0,14 0,085 0,04 0,015 0,005

Интервальный вариационный ряд графически изобразим в виде гистограммы (рис.3). На оси Х отложим интервалы длиной h=3, а на оси Y значения ,расчёт которых представлен в таблице №7. Площадь под гистограммой равна сумме всех относительных частот, т.е. единице.

Графическое изображение вариационных рядов в виде полигона и гистограммы позволяет получать первоначальное представление о закономерностях, имеющих место в совокупности наблюдений.

 


Рис.3

 

3) Найдём числовые характеристики вариационного ряда, используя таблицу №4.

Выборочная средняя ():

или , (10)

где - частоты,

а -объём выборки. Выборочная средняя является оценкой математического ожидания (среднего значения теоретического закона распределения).

В некоторых случаях удобнее рассчитать с помощью условных вариант. В нашем случае варианты - большие числа, поэтому используем разность:

(11)

где С – произвольно выбранное число (ложный нуль). В этом случае

. (12)

Для изменения значения варианты можно ввести также условные варианты путём использования масштабного множителя:

, (13)

где (b выбирается положительным или отрицательным числом).

. Здесь С – середина 8-го интервала.

Выборочная дисперсия ():

(14)

также может быть рассчитана с помощью условных вариант:

(15)

=(1*441+0*324+…+1*324)- 1,95²=40,21

Среднеквадратическое отклонение:

= (16)

==6,34

Найдем несмещённую оценку дисперсии и среднеквадратического отклонения («исправленную» выборочную дисперсию и среднеквадратическое отклонение) по формулам:

и (17)

 

==40,41 и S=6,34=6,36

Доверительный интервал для оценки математического ожидания с надёжностью 0,95 определяют по формуле:

P(-tФ(t)= (18)

Из соотношения Ф(z)=/2 вычисляют значение функции Лапласа: Ф(z)=0,475. По таблице значений функции Лапласа ( Приложение А) находят z=1,96. Таким образом,

168,55-1,96,

167,67<a<169,43.

Доверительный интервал для оценки среднего квадратичного отклонения случайной величины находят по формуле:

, (19)

где S – несмещённое значение выборочного среднего квадратичного отклонения;

q – параметр, который находится по таблице (Приложение В) на основе известного объёма выборки n и заданной надёжности оценки .

На основании данных значений =0,95 и n=200 по таблице (Приложение В) можно найти значение q=0,099. Таким образом,

,

5,79<

V= (20)

4) Проведём статистическую проверку гипотезы о нормальном распределении. Нормальный закон распределения имеет два параметра (r=2): математическое ожидание и среднее квадратическое отклонение. По выборочным данным (таблицы 5 и 7) полученные оценки параметров нормального распределения, вычисленные выше:

, , S=6,36.

Для расчёта теоретических частот используют табличные значения функции Лапласа Ф(z). Алгоритм вычисления состоит в следующем:

- по нормированным значениям случайной величины Z находят значения Ф(z), а затем :

, =0,5+Ф().

Например,

; ; Ф(-3,0)=-0,4987;

;

- далее вычисляют вероятности =P(;

- находят числа , и если некоторое <5, то соответствующие группы объединяются с соседними.

Результаты вычисления , , и приведены в таблице 9.

По формуле

= (21)

можно сделать проверку расчетов.

По таблице (приложения Г) можно найти число по схеме: для уровня значимости α=0,05 и числа степеней свободы l=k-r-1=9-2-1=6=12,6. Следовательно, критическая область - (12,6;). Величина =15,61 входит в критическую область, поэтому гипотеза о том, что случайная величина Х подчинена нормальному закону распределения, отвергается.

При α=0,1 =10,6. Критическая область - (10,6;). Величина =15,61 также входит в критическую область и гипотеза о нормальном законе распределения величины Х отвергается.

При α=0,01 =16,8, (16,8;). В этом случае нет оснований отвергать гипотезу о нормальном законе распределения.

Таблица 9

Определение

 

i Ф()
149,5 -0,500 0,000 0,0013 0,0013 0,26 -
149,5 152,5 -0,449 0,0013 0,0059 0,0046 0,92 -
152,5 155,5 -0,494 0,0059 0,02 0,014 2,8 -
155,5 158,5 -0,48 0,02 0,057 0,037 7,4 2,54
158,5 161,5 -0,44 0,057 0,134 0,077 15,4 4,58
161,5 164,5 -0,37 0,134 0,26 0,126 25,2 0,7
164,5 167,5 -0,24 0,26 0,433 0,1725 34,5 0,36
167,5 170,5 -0,07 0,433 0,62 0,188 37,6 0,06
170,5 173,5 0,12 0,62 0,78 0,16 1,125
173,5 176,5 0,28 0,78 0,89 0,11 0,045
176,5 179,5 0,39 0,89 0,96 0,07 0,071
179,5 182,5 0,46 0,96 0,99 0,03 6,125
182,5 185,5 0,49 0,99 0,996 0,006 1,2 -
185,5 188,5 0,496 0,996 0,999 0,003 0,6 -
188,5 0,5 0,999 1,0 0,001 0,2 -

,0000

2 часть

1) Данные таблицы 3 сгруппируем в корреляционную таблицу 10.

2) Строим в системе координат множество, состоящее из 200 экспериментальных точек (рисунок 4).

По расположению точек делаем заключение о том, что экономико-математическую модель можно искать в виде .

3) Найдём выборочные уравнения линейной регрессии.

Для упрощения расчётов разобьём случайные величины на интервалы и выберем средние значения. Для величины Х указанные действия были выполнены в 1 части задания.

– Конец работы –

Эта тема принадлежит разделу:

Теория вероятности

Государственное образовательное учреждение... высшего профессионального образования...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Дискретный вариационный ряд

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

МАТЕМАТИКА
(ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА) Методические указания к изучению дисциплины и выполнению контрольной работы № 3 для студентов заочной ф

Санкт-Петербург
Допущено редакционно-издательским советом СПбГИЭУ в качестве методического издания   Составители:   ст. преп.

ОБЩИЕ ПОЛОЖЕНИЯ
Цель дисциплины «Математика (Теория вероятностей и математическая статистика)» - дать необходимый математический аппарат и привить навыки его использования при решении инженерно-экономических задач

СЛУЧАЙНЫЕ СОБЫТИЯ. ОСНОВНЫЕ ПОНЯТИЯ
  Случайным называется событие, которое при осуществлении совокупности некоторых условий S может либо произойти, либо не произойти. Пример: событие А1 - выпадение “шестерки

ВЕРОЯТНОСТНУЮ СХЕМУ
1. Брошены две игральные кости. Какова вероятность того, что на них выпали грани с одинаковым числом очков? Каждому из шести исходов при броске первой кости соответствует

ВЕРОЯТНОСТЯХ
  Относительная частота события А - это отношение числа испытаний, в которых событие фактически появилось (благоприятствующих А) к общему числу проведенных испытаний:

УСЛОВНЫЕ ВЕРОЯТНОСТИ. НЕЗАВИСИМОСТЬ СОБЫТИЙ
  Условная вероятность Р(В / А) = РA(В) - это вероятность осуществления события В при условии, что событие А уже произошло (причем последнее не является невозможным, т.е. Р

ПОВТОРНЫЕ НЕЗАВИСИМЫЕ ИСПЫТАНИЯ
  Пусть проводится n последовательных испытаний. Предположим, что эти испытания независимые, т.е. вероятность осуществления очередного исхода не зависит от реализации исходов предыдущ

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ДИСКРЕТНОГО ТИПА.
  Cлучайной величиной называют величину, которая в результате испытания примет одно и только одно возможное числовое значение из заранее известной совокупности значений. Случайной вел

ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ
  Если F(x) = P(X < x), то функция F(x) называется функцией распределения (интегральной функцией распределения) случайной величины Х, т.е. функция распределения в точке “х” - это в

ВЕЛИЧИНЫ ДИСКРЕТНОГО ТИПА
  Математическое ожидание - важнейшая “характеристика положения” случайной величины. Для дискретной величины она вычисляется по формуле М(Х) = x1 · p1 +

ДИСПЕРСИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ
  Дисперсия - важнейшая «характеристика рассеивания» случайной величины. Рассеивание оценивается относительно среднего значения случайной величины Х - математического ожидания М(Х). И

БИНОМИАЛЬНЫЙ И ПУАССОНОВСКИЙ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ
Биномиальное распределение связано с повторными независимыми испытаниями и формулой Бернулли. Оно задается фиксированным числом испытаний n и вероятностью

Распределение Пуассона.
Приведем примеры, приводящие к случайным величинам, распределенным по закону Пуассона: · Автоматическая телефонная станция получает в среднем за минуту а вызовов. Какова вероятность

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ НЕПРЕРЫВНОГО ТИПА.
  Если возможные значения случайной величины сплошь заполняют некоторый промежуток <a,b> Ì R(быть может, и всюось), то табличный способ задания случайной

ХАРАКТЕРИСТИКИ
  Нормальный (гауссовский) закон распределения задается плотностью распределения по формуле   , -

ДРУГИЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН
  Кроме нормального закона есть и другие случайные величины, часто встречающиеся в приложениях. Приведем некоторые из них. Для равномерного закона плотность вероятност

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ ЗАДАНИЯ № 5
Математическая статиcтика изучает массовые явления и процессы, ставя целью получение выводов по данным наблюдений за ними. В результате появляются утверждения об общих характеристиках таких явлений

Дискретный вариационный ряд
  i

Интервальный вариационный ряд
  Индекс интервала i Число покупателей (интервалы) Частота

Тема 3.3.Основные предельные теоремы
Неравенство Чебышева: сходимость по вероятности и сходимость по распределению последовательности случайных величин к случайной величине; центрирование и нормирова

Тема 3.5. Статистическое оценивание и проверка гипотез
Статистические оценки (аналоги) числовых характеристик случайных величин; требование к качеству оценок; эмпирическая функция распределения и плотность распределения (гистограмма); вариационная посл

МАТЕМАТИКА
Выполнил: __________ (Фамилия И.О.)________________   студент ____ курса (срок обучения) спец. _____________ группа______№ зачет. к

Перечень контрольных вопросов для проверки знаний по дисциплине
  1. Что такое случайное событие? 2. Какие действия возможны над событиями? 3. Как выглядят формулы классической, геометрической, статистической вероятностей?

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги