рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

СЛУЧАЙНЫЕ СОБЫТИЯ. ОСНОВНЫЕ ПОНЯТИЯ

СЛУЧАЙНЫЕ СОБЫТИЯ. ОСНОВНЫЕ ПОНЯТИЯ - раздел Математика, Теория вероятности   Случайным Называется Событие, Которое При Осуществлении Совок...

 

Случайным называется событие, которое при осуществлении совокупности некоторых условий S может либо произойти, либо не произойти. Пример: событие А1 - выпадение “шестерки” при одном броске игральной кости (кубика с занумерованными гранями).

Достоверным называют событие, которое обязательно произойдет, если будет осуществлена совокупность условий S. Пример: событие А2 - при одном броске игральной кости число выпавших очков меньше 7. Обозначим достоверное событие буквой W.

Невозможным называют событие, которое заведомо не произойдет при осуществлении совокупности событий S. Пример: событие А3 - при одном броске игральной кости число выпавших очков дробно. Невозможное событие обозначим символом Æ.

События W и Æ будем рассматривать как частные (“крайние”) случаи случайных событий, хотя они не являются таковыми.

Два или более событий назовем несовместными, если в результате осуществления условий S (или, по-другому, в результате испытания) невозможно их совместное осуществление, т.е. появление одного из них исключает появление другого в том же испытании. Пример: событие А4 - при броске игральной кости выпало нечетное число очков - несовместно с событием А1 (выпала “шестерка”).

 

 

§2. СЛУЧАЙНЫЕ СОБЫТИЯ. ОПЕРАЦИИ

 

Сумма событий А + В - событие, состоящее в том, что произошло хотя бы одно из двух событий А и В, т.е. наступило либо А, либо В, либо оба сразу. Пример: для событий А1 и А4 из §1 А1 + А4 = {выпало 1,3,5 или 6 очков}.

Произведение событий А · В - это совместное осуществление и А и В (иначе: их общие исходы). Пусть В = {при броске игральной кости выпало число очков, кратное 3}. Тогда В · А4 = {выпала грань с 3 очками}.

Для несовместных событий А и В их произведение А·В=Æ : у них нет общих исходов. В частности, для последнего примера §1 можно записать А1 ·А4 = Æ.

Событие называется противоположным к А (т.е. состоит в том, что “ достоверное событие W происходит, а событие А не происходит”).

Для операций над событиями выполняются свойства:

А + В = В + А
А · В = В · А
(А + В) + С = А + (В + С)
(А · В) · С = А · (В · С)
(А + В) · С = А · С + В · С

Если события Н1, Н2, ..., Нn попарно несовместны (Нi·Hj=Æ при i ¹ j ), а их сумма - достоверное событие (H1+H2+...+Hn = W ), то говорят, что {H1, H2, ..., Hn} - полная группа несовместных событий или разбиение W. В частности, {A,} - полная группа несовместных событий для любого А.

 

§3. КЛАССИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ

 

Вероятность события А - это число Р(А), которое вводится для количественного описания степени объективной возможности наступления А.

В этом параграфе рассмотрим испытания, в которых множество W представляет собой конечное число равновозможных исходов. Например, если бросить игральную кость один раз, то она может выпасть на любую из шести граней. Достоверное событие W здесь состоит в том, что выпала одна из шести граней. Будем считать кубик симметричным; в этом случае можно считать все шесть исходов равновозможными. В случае двух бросков симметричной монеты - 4 различных исхода: “орел-орел” (О, О), “орел-решка”(О, Р), а также Р, О и Р, Р; их также считают равновозможными. Все они вместе образуют достоверное событие W для данного испытания. В первом случае вероятность каждого из элементарных исходов равна 1/6, а во втором 1/4.

В общем случае, если число всех элементарных исходов N(W) равно n, то вероятность каждого из них 1/n. Пусть число благоприятствующих исходов для А или, иначе, число элементарных исходов испытания, входящих в событие А ( N(A) ), равно m, тогда вероятность

( 1 )

Это формула классической вероятности.

В примерах из §1 шесть элементарных исходов: выпала цифра 1, 2, 3, 4, 5 или 6. Событие А1 включает в себя ровно 1 элементарный исход, А2 (достоверное) - все 6, А3 (невозможное) - 0, А4 - 3. Поэтому

, ,

,

 

Еще примеры. При двух бросках симметричной монеты событие С = {выпал хотя бы один “орел”} включает в себя три элементарных исхода из четырех, поэтому .

Событию D = {при трех бросках монеты выпало ровно два ”орла”} благоприятствуют 3 из 8 возможных элементарных исходов, поэтому .

 

– Конец работы –

Эта тема принадлежит разделу:

Теория вероятности

Государственное образовательное учреждение... высшего профессионального образования...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: СЛУЧАЙНЫЕ СОБЫТИЯ. ОСНОВНЫЕ ПОНЯТИЯ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

МАТЕМАТИКА
(ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА) Методические указания к изучению дисциплины и выполнению контрольной работы № 3 для студентов заочной ф

Санкт-Петербург
Допущено редакционно-издательским советом СПбГИЭУ в качестве методического издания   Составители:   ст. преп.

ОБЩИЕ ПОЛОЖЕНИЯ
Цель дисциплины «Математика (Теория вероятностей и математическая статистика)» - дать необходимый математический аппарат и привить навыки его использования при решении инженерно-экономических задач

ВЕРОЯТНОСТНУЮ СХЕМУ
1. Брошены две игральные кости. Какова вероятность того, что на них выпали грани с одинаковым числом очков? Каждому из шести исходов при броске первой кости соответствует

ВЕРОЯТНОСТЯХ
  Относительная частота события А - это отношение числа испытаний, в которых событие фактически появилось (благоприятствующих А) к общему числу проведенных испытаний:

УСЛОВНЫЕ ВЕРОЯТНОСТИ. НЕЗАВИСИМОСТЬ СОБЫТИЙ
  Условная вероятность Р(В / А) = РA(В) - это вероятность осуществления события В при условии, что событие А уже произошло (причем последнее не является невозможным, т.е. Р

ПОВТОРНЫЕ НЕЗАВИСИМЫЕ ИСПЫТАНИЯ
  Пусть проводится n последовательных испытаний. Предположим, что эти испытания независимые, т.е. вероятность осуществления очередного исхода не зависит от реализации исходов предыдущ

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ДИСКРЕТНОГО ТИПА.
  Cлучайной величиной называют величину, которая в результате испытания примет одно и только одно возможное числовое значение из заранее известной совокупности значений. Случайной вел

ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ
  Если F(x) = P(X < x), то функция F(x) называется функцией распределения (интегральной функцией распределения) случайной величины Х, т.е. функция распределения в точке “х” - это в

ВЕЛИЧИНЫ ДИСКРЕТНОГО ТИПА
  Математическое ожидание - важнейшая “характеристика положения” случайной величины. Для дискретной величины она вычисляется по формуле М(Х) = x1 · p1 +

ДИСПЕРСИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ
  Дисперсия - важнейшая «характеристика рассеивания» случайной величины. Рассеивание оценивается относительно среднего значения случайной величины Х - математического ожидания М(Х). И

БИНОМИАЛЬНЫЙ И ПУАССОНОВСКИЙ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ
Биномиальное распределение связано с повторными независимыми испытаниями и формулой Бернулли. Оно задается фиксированным числом испытаний n и вероятностью

Распределение Пуассона.
Приведем примеры, приводящие к случайным величинам, распределенным по закону Пуассона: · Автоматическая телефонная станция получает в среднем за минуту а вызовов. Какова вероятность

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ НЕПРЕРЫВНОГО ТИПА.
  Если возможные значения случайной величины сплошь заполняют некоторый промежуток <a,b> Ì R(быть может, и всюось), то табличный способ задания случайной

ХАРАКТЕРИСТИКИ
  Нормальный (гауссовский) закон распределения задается плотностью распределения по формуле   , -

ДРУГИЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН
  Кроме нормального закона есть и другие случайные величины, часто встречающиеся в приложениях. Приведем некоторые из них. Для равномерного закона плотность вероятност

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ ЗАДАНИЯ № 5
Математическая статиcтика изучает массовые явления и процессы, ставя целью получение выводов по данным наблюдений за ними. В результате появляются утверждения об общих характеристиках таких явлений

Дискретный вариационный ряд
  i

Интервальный вариационный ряд
  Индекс интервала i Число покупателей (интервалы) Частота

Дискретный вариационный ряд
  Номер интервала i Среднее значение интервала Относительная частота

Тема 3.3.Основные предельные теоремы
Неравенство Чебышева: сходимость по вероятности и сходимость по распределению последовательности случайных величин к случайной величине; центрирование и нормирова

Тема 3.5. Статистическое оценивание и проверка гипотез
Статистические оценки (аналоги) числовых характеристик случайных величин; требование к качеству оценок; эмпирическая функция распределения и плотность распределения (гистограмма); вариационная посл

МАТЕМАТИКА
Выполнил: __________ (Фамилия И.О.)________________   студент ____ курса (срок обучения) спец. _____________ группа______№ зачет. к

Перечень контрольных вопросов для проверки знаний по дисциплине
  1. Что такое случайное событие? 2. Какие действия возможны над событиями? 3. Как выглядят формулы классической, геометрической, статистической вероятностей?

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги