рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

УСЛОВНЫЕ ВЕРОЯТНОСТИ. НЕЗАВИСИМОСТЬ СОБЫТИЙ

УСЛОВНЫЕ ВЕРОЯТНОСТИ. НЕЗАВИСИМОСТЬ СОБЫТИЙ - раздел Математика, Теория вероятности   Условная Вероятность Р(В / А) = РA(В) - Это Вероят...

 

Условная вероятность Р(В / А) = РA(В) - это вероятность осуществления события В при условии, что событие А уже произошло (причем последнее не является невозможным, т.е. Р(А) > 0). Эту вероятность можно вычислить по формуле

Для краткости эта величина называется “вероятностью события В при условии А”. Заметим, что для величины Р(В / А) выполняются аксиомы I, II, III, и , следовательно, простейшие свойства (см. §6).

Обозначим через Х число очков, выпавших при одном бросании игральной кости. Пусть А = {Х – простое число}, В = {Х – четное число}. Тогда Р(А) = 3/6 = 1/2 (числа 2, 3, 5 - простые, 1, 4, 6 - нет), Р(В) = 3/6 = 1/2, Р(А · В) = 1/6 (простое и четное одновременно число только одно - это 2). Следовательно, Р(В / А) = 1/3, т.е. вероятность того, что выпало четное число очков при условии, что выпало простое число очков, равна 1/3 (среди 3 простых чисел четное - одно); Р(А/В) = 1/3, т.е. вероятность того, что выпало простое число очков при условии, что выпало четное число очков, также равна 1/3 (среди 3 четных чисел простое - одно) .

События А и В называют независимыми, если

Р(А · В) = Р(А) · Р(В).

Если одно из событий невозможное ( Æ ), то в обеих частях стоят нули. Если же Р(А) > 0 и Р(В) > 0, то Р(А / В) = Р(А), Р(В / А) = Р(В).

Для последнего примера Р(А · В) ¹ Р(А) · Р(В) , значит, А и В зависимые.

Во многих задачах независимость событий задается по условию задачи (из общих соображений).

 

§8. ВЕРОЯТНОСТЬ НАСТУПЛЕНИЯ ХОТЯ БЫ ОДНОГО СОБЫТИЯ

 

Сложные события выражаются через другие наблюдаемые события с помощью алгебраических операций, описанных в §2. Основные формулы для вычисления вероятностей таких событий:

 

Р() = 1 - Р(А). (2)

 

Р(А · В) = Р(А) · Р(В / А) = Р(В) · Р(А / В) , если Р(А) > 0, Р(В) > 0 (формула умножения вероятностей); (3)

 

Р(А + В) = Р(А) + Р(В) - Р(А · В)

(формула сложения вероятностей). (4)

 

Пример 1. Два стрелка независимо друг от друга ведут стрельбу по мишени, причем вероятности попадания при одном выстреле в мишень для них равны p1 = 0,8, p2 = 0,6. Каждый произвел по одному выстрелу. Вычислить вероятность события А = {произойдет ровно одно попадание}.

Рассмотрим события А1 = {первый стрелок попал в мишень} и А2 = {второй стрелок попал в мишень}. Тогда = {первый стрелок промахнулся}, a = {второй стрелок промахнулся}. В мишени окажется ровно одна пробоина в тех случаях, когда либо первый попал, а второй промахнулся, либо первый промахнулся, а второй попал. Поэтому А = А1 ·+ А2 ·. Последние два события несовместны, поэтому сумма их вероятностей равна вероятности их суммы А. События А1 и , а также А2 и попарно независимы, т.е. вероятности произведений этих событий равны соответствующим произведениям вероятностей этих событий. Т.к. Р(А1)=p1=0,8, P(A2)=p2=0,6, то Р() = 1 - p1 = q1 = 0,2, P() = 1 - p2 = q2 = 0,4 и Р(А) = p1q2 + p2q1 = 0,44.

Вероятность наступления “хотя бы одного события” (т.е. суммы нескольких событий ) вычисляют по формуле

(5)

Если же эти события попарно независимы, то

 

Пример 2. В продукции предприятия 10% бракованных изделий. Какова вероятность, что среди 4 взятых независимо изделий хотя бы одно бракованное?

Пусть А - интересующее нас событие, А = A1+ A2+ A3+ A4 , где A1 = {первое изделие бракованное}, A2 = {второе изделие бракованное} и т.д. Так как A1, A2, A3, A4 независимы, то и события также независимы. Событие = {среди 4 изделий ни одного бракованного} = , где = {первое изделие не бракованное} и т. д. Так как Р(A1) = Р (A2) = Р (A3) = Р(A4) = 0,1 (=10%) , то Р() = (1 - 0,1)4 = 0,94 = 0,6561. Значит, Р(А) = 1 - Р() = 0,3439.

Если изделий не 4 , а 2 , то вероятность того, что из этих двух изделий хотя бы одно бракованное, можно вычислить с помощью формулы (3), т.е. не переходя к противоположному событию:

P (A1+A2) = P (A1) + P (A2) - P (A) P (A2) = 0,1 + 0,1 - 0,01 = 0,19.

 

§9. ФОРМУЛА ПОЛНОЙ ВЕРОЯТНОСТИ

 

Пусть H1, H2, ...,Hn - полная группа несовместных событий (определение см. в §2) и пусть событие А может произойти только с одним из событий Нk. Для такого события А выполняется следующая “формула полной вероятности”

События Hk принято называть гипотезами по отношению к событию А. Вероятности Р(Hk) трактуются как доопытные (априорные) вероятности гипотез.

 

Пример 1. Вероятность попадания в мишень при одном выстреле равна 0,8. Стрелок сделал два выстрела, а затем бросил симметричную монету столько раз, сколько попал в мишень. Какова вероятность, что в результате выпал ровно один “орел”?

Здесь в качестве гипотез рассмотрим события Н1 = {произошло два попадания}, H2 = {произошло одно попадание}, H3 = {произошло два промаха}. Их вероятности Р( Н1 ) = 0,82 = 0,64, Р( Н2 ) = 2 · (1 - 0,8) · 0,8 = 0,32 (множитель 2 здесь из-за того, что гипотеза содержит два равновероятных события: “попал - промахнулся” и “промахнулся - попал” - это формула Бернулли при р = 0,8, q = 0,2 , n = 2 , k = 1 - см. §11), Р(Н3) = (1 - 0,8)2 = 0,04 . Сумма вероятностей этих гипотез равна 1, как и должно быть для полной группы. Далее рассмотрим событие А = {выпал ровно один “орел”}. Если произошло событие Н1, то монета бросается дважды. Вероятность того, что при этом выпадет ровно 1 “орел”, равна Р( А/ H1 ) = 0,5 ( либо “орел - решка” с вероятностью 0,25 , либо “решка - орел” также с вероятностью 0,25 ). Если произошло событие Н2, то монета бросается один раз и вероятность выпадения при этом одного “орла” равна Р( А/H2 ) = 0,5 . Если же происходит событие Н3, то монету не бросают и Р(А/H3)= 0. Все данные для формулы полной вероятности получены. Следовательно,

Р(А) = Р( Н1 )Р( А/H1 ) + P( H2 )P( A/H2 ) + P( H3 )P( A/H3 ) = 0,48.

 

Пример 2. В ящике лежат 10 теннисных мячей, в том числе 8 новых и 2 играных. Для игры наудачу выбираются два мяча и после игры возвращаются обратно. Затем для второй игры наудачу извлекаются еще два мяча. Какова вероятность того, что вторая игра будет проводиться новыми мячами?

Здесь удобно задать 3 гипотезы: H1 = {для первой игры взяты 2 новых мяча}, H2 = {для первой игры взяты новый и играный мячи}, Н3 = {для первой игры взяты 2 играных мяча}. Их вероятности вычисляются по формуле классической вероятности ( как и в примерах из §4 ) :

; ;

(Проверка: Р(H1) + Р(H2) + Р(H3) = 1).

Событие А = {для второй игры взяты два новых мяча}. В результате осуществления гипотезы H1 в ящике останется 6 новых и 4 играных мяча, поэтому . В результате осуществления гипотезы H2 в ящике будет 7 новых мячей из 10, поэтому . Аналогично, . Таким образом,

Заметим, что в одной и той же задаче могут быть выбраны разные наборы гипотез, скажем, в примере 2 гипотезу H2 можно представить в виде суммы двух: H2 = {первый взятый для первой игры мяч новый, второй - играный}+{первый взятый для первой игры мяч играный, второй - новый} и т. д. Желательно формулировать гипотезы так, чтобы их вероятности, а также и условные вероятности, вычислялись проще.

 

§10. ФОРМУЛА БАЙЕСА

 

В этом параграфе {H1, H2, H3, H4} - по-прежнему, полная группа несовместных событий (гипотез). Если Р(А) > 0, Р(Hk) > 0, то Р(А · Hk) = Р(А) · Р(Hk / А) = Р(Hk) · Р(А / Hk) (см. §§7,8), откуда

-это формула Байеса, в которой Р(А) вычисляют по формуле полной вероятности. Р(Hk / А) - вероятность осуществления гипотезы Hk при условии, что событие А осуществилось. Эту вероятность называют послеопытной или апостериорной. Для ее вычисления рассматривают только те испытания, которые закончились “успехом”, т.е. осуществлением события А. Вероятность Р(Hk / А) выражает “долю” гипотезы Hk для вышеуказанных испытаний.

 

Пример 1. (см. пример 1 из §8).

Два стрелка независимо друг от друга ведут стрельбу по мишени, причем вероятности попадания при одном выстреле в мишень для них равны p1 = 0,8 и p2 = 0,6. Каждый сделал по одному выстрелу, причем в результате в мишени оказалась одна пробоина. Найти вероятность того, что промахнулся второй.

Зададим гипотезы: Н1 = {оба стрелка либо попали, либо промахнулись}, H2 = {попал только первый}, H3 = {попал только второй}. Подсчитаем их вероятности: P( H1 ) = p1p2 + q1q2 = 0,56 , P( H2 ) = p1q2 = 0,32 , P( H3 ) = q1p2 = 0,12 . Сумма их вероятностей равна 1.

Событие А = {в мишени оказалась ровно 1 пробоина} осуществилось, т.е. данная задача на формулу Байеса. Событие {при одной пробоине промахнулся второй}- это гипотеза H2 . По формуле Байеса

т. к. Р(А/Н1) = 0 , Р(А/Н2) = Р(А/Н3) = 1 . Значение Р(А), вычисленное по формуле полной вероятности, совпадает с результатом, вычисленным ранее в §8 другим способом. Итак, в среднем среди каждых 11 исходов, заканчивающихся одним попаданием, 8 соответствуют варианту H2 = {первый попал, второй промахнулся}, а остальные три - H3.

 

Пример 2. (см. пример 2 из §9)

В ящике лежат 10 теннисных мячей, в том числе 8 новых и 2 играных. Для игры наудачу выбираются 2 мяча и после игры возвращаются обратно. Затем для второй игры наудачу извлекаются еще 2 мяча, оказавшиеся новыми. Какова вероятность, что первая игра также проводилась новыми мячами?

Событие А = {для второй игры взяты два новых мяча}, осуществилось. Поэтому задача решается по формуле Байеса. Нас интересует вероятность Р(H1 / А) , где, напомним, гипотеза H1 ={для первой игры взяты 2 новых мяча}. Подставим в формулу Байеса вероятности, подсчитанные в §9.

 

Постановки задач, подобных изложенным в §9 и в §10, встретятся при решении задачи №1 из контрольной работы.

 

– Конец работы –

Эта тема принадлежит разделу:

Теория вероятности

Государственное образовательное учреждение... высшего профессионального образования...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: УСЛОВНЫЕ ВЕРОЯТНОСТИ. НЕЗАВИСИМОСТЬ СОБЫТИЙ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

МАТЕМАТИКА
(ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА) Методические указания к изучению дисциплины и выполнению контрольной работы № 3 для студентов заочной ф

Санкт-Петербург
Допущено редакционно-издательским советом СПбГИЭУ в качестве методического издания   Составители:   ст. преп.

ОБЩИЕ ПОЛОЖЕНИЯ
Цель дисциплины «Математика (Теория вероятностей и математическая статистика)» - дать необходимый математический аппарат и привить навыки его использования при решении инженерно-экономических задач

СЛУЧАЙНЫЕ СОБЫТИЯ. ОСНОВНЫЕ ПОНЯТИЯ
  Случайным называется событие, которое при осуществлении совокупности некоторых условий S может либо произойти, либо не произойти. Пример: событие А1 - выпадение “шестерки

ВЕРОЯТНОСТНУЮ СХЕМУ
1. Брошены две игральные кости. Какова вероятность того, что на них выпали грани с одинаковым числом очков? Каждому из шести исходов при броске первой кости соответствует

ВЕРОЯТНОСТЯХ
  Относительная частота события А - это отношение числа испытаний, в которых событие фактически появилось (благоприятствующих А) к общему числу проведенных испытаний:

ПОВТОРНЫЕ НЕЗАВИСИМЫЕ ИСПЫТАНИЯ
  Пусть проводится n последовательных испытаний. Предположим, что эти испытания независимые, т.е. вероятность осуществления очередного исхода не зависит от реализации исходов предыдущ

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ДИСКРЕТНОГО ТИПА.
  Cлучайной величиной называют величину, которая в результате испытания примет одно и только одно возможное числовое значение из заранее известной совокупности значений. Случайной вел

ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ
  Если F(x) = P(X < x), то функция F(x) называется функцией распределения (интегральной функцией распределения) случайной величины Х, т.е. функция распределения в точке “х” - это в

ВЕЛИЧИНЫ ДИСКРЕТНОГО ТИПА
  Математическое ожидание - важнейшая “характеристика положения” случайной величины. Для дискретной величины она вычисляется по формуле М(Х) = x1 · p1 +

ДИСПЕРСИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ
  Дисперсия - важнейшая «характеристика рассеивания» случайной величины. Рассеивание оценивается относительно среднего значения случайной величины Х - математического ожидания М(Х). И

БИНОМИАЛЬНЫЙ И ПУАССОНОВСКИЙ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ
Биномиальное распределение связано с повторными независимыми испытаниями и формулой Бернулли. Оно задается фиксированным числом испытаний n и вероятностью

Распределение Пуассона.
Приведем примеры, приводящие к случайным величинам, распределенным по закону Пуассона: · Автоматическая телефонная станция получает в среднем за минуту а вызовов. Какова вероятность

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ НЕПРЕРЫВНОГО ТИПА.
  Если возможные значения случайной величины сплошь заполняют некоторый промежуток <a,b> Ì R(быть может, и всюось), то табличный способ задания случайной

ХАРАКТЕРИСТИКИ
  Нормальный (гауссовский) закон распределения задается плотностью распределения по формуле   , -

ДРУГИЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН
  Кроме нормального закона есть и другие случайные величины, часто встречающиеся в приложениях. Приведем некоторые из них. Для равномерного закона плотность вероятност

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ ЗАДАНИЯ № 5
Математическая статиcтика изучает массовые явления и процессы, ставя целью получение выводов по данным наблюдений за ними. В результате появляются утверждения об общих характеристиках таких явлений

Дискретный вариационный ряд
  i

Интервальный вариационный ряд
  Индекс интервала i Число покупателей (интервалы) Частота

Дискретный вариационный ряд
  Номер интервала i Среднее значение интервала Относительная частота

Тема 3.3.Основные предельные теоремы
Неравенство Чебышева: сходимость по вероятности и сходимость по распределению последовательности случайных величин к случайной величине; центрирование и нормирова

Тема 3.5. Статистическое оценивание и проверка гипотез
Статистические оценки (аналоги) числовых характеристик случайных величин; требование к качеству оценок; эмпирическая функция распределения и плотность распределения (гистограмма); вариационная посл

МАТЕМАТИКА
Выполнил: __________ (Фамилия И.О.)________________   студент ____ курса (срок обучения) спец. _____________ группа______№ зачет. к

Перечень контрольных вопросов для проверки знаний по дисциплине
  1. Что такое случайное событие? 2. Какие действия возможны над событиями? 3. Как выглядят формулы классической, геометрической, статистической вероятностей?

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги