рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ПОВТОРНЫЕ НЕЗАВИСИМЫЕ ИСПЫТАНИЯ

ПОВТОРНЫЕ НЕЗАВИСИМЫЕ ИСПЫТАНИЯ - раздел Математика, Теория вероятности   Пусть Проводится N Последовательных Испытаний. Предположим, Ч...

 

Пусть проводится n последовательных испытаний. Предположим, что эти испытания независимые, т.е. вероятность осуществления очередного исхода не зависит от реализации исходов предыдущих испытаний. Рассмотрим простейший случай, когда различных исходов всего два (“успех” и “неуспех”). Более того, речь пойдет о случае, когда вероятность “успеха” в каждом из испытаний неизменна и равна p, т.е. вероятность “неуспеха” также неизменна и равна q = 1 - p . Такие испытания называются испытаниями Бернулли.

Простейшими примерами здесь могут служить: последовательное бросание монеты (с вероятностью “успеха” - выпадения “орла” - равной 0,5); последовательная стрельба по мишени с постоянной вероятностью “успеха” - попадания - в каждом выстреле; извлечение из урны, содержащей шары двух цветов, по одному шару с возвращением (и перемешиванием); и т. д.

Я. Бернулли вычислил вероятность того, что в n последовательных “испытаниях Бернулли” произойдет ровно k “успехов”

(о вычислении числа см. §4).

 

Пример 1. Вероятность того, что при 4 бросках игральной кости выпадут ровно 2 “четверки”, равна

Здесь p - вероятность выпадения “четверки” в одном броске - равна 1/6, q = 5/6 , общее число испытаний n = 4 , число “успехов” k = 2 .

 

Пример 2. Вероятность попадания в мишень при одном выстреле p = 0,6 . Какова вероятность, что при пяти выстрелах будет 3 попадания?

Здесь n = 5 , k = 3 , q = 1 - p = 0,4 ,

.

 

Пример 3. В урне 4 белых и 2 черных шара. 6 раз извлекают по 1 шару, записывают цвет, а шар возвращают в урну и перемешивают шары. Какова вероятность, что среди записанных шаров более 4 белых?

Пусть “успех” состоит в том, что вынут белый шар. Тогда p= 4/6 = 2/3 ( из 6 шаров 4 белых ), q = 1 - p = 1/3 . По условию n= 6 , k = 5 или k = 6 , откуда искомая вероятность

.

Пример 4. Вероятность попадания в мишень при одном выстреле p = 0,6 . Какова вероятность, что третье попадание произойдет в пятом выстреле?

Эта задача отличается от рассмотренной в примере 2 : там третье попадание может произойти и раньше пятого выстрела. Искомое событие является произведением двух следующих (независимых): А = {в первых 4 выстрелах ровно 2 попадания} и В={в пятом выстреле попадание}. P(A) вычисляется по формуле Бернулли

,

a P(B) = p = 0,6 . Поэтому искомая вероятность равна

В общем случае вероятность того, что к-й “успех” произойдет ровно в n-м испытании Бернулли, равна

.

 

Пример 5. Вероятность попадания в мишень при одном выстреле p = 0,6 . Какова вероятность, что в 5 выстрелах произойдет хотя бы 2 попадания?

Мы знаем, что Р5(0) + Р5(1) + Р5(2) + Р5(3) + Р5(4) + Р5(5) = 1. В данной задаче нас интересует сумма четырех последних слагаемых:

Заметим, что проще воспользоваться вероятностью противоположного события:1- P5(0)-P5(1)=1-0,45-5 0,44 0,6 = 0,91296.

 

§12. ДРУГИЕ ФОРМУЛЫ ВЫЧИСЛЕНИЯ

ВЕРОЯТНОСТЕЙ ДЛЯ СХЕМЫ БЕРНУЛЛИ

 

Хотя формула Бернулли и является точной, она не всегда удобна. Например, при 100 бросках монеты

,

и вычисление точного ответа затруднительно. Формула Бернулли приемлема для вычислений, если число испытаний не превышает 10-15. При больших n используют либо формулу Лапласа, либо формулу Пуассона.

Формула Лапласа ( локальная теорема Лапласа )

, ,

тем точнее, чем больше n. Здесь n, k, p, q - те же величины, что и в формуле Бернулли. Функция j(x) четная: j(-x) = j(x) . Она быстро убывает: считают, что при x > 4 j(x) = 0. Таблица, позволяющая вычислять значения функции j(x), имеется во всех учебниках и задачниках по теории вероятностей. Впрочем, можно не иметь таблицы, а иметь калькулятор, вычисляющий экспоненту (функцию ех).

 

Пример 1. Вероятность выпадения ровно 50 “орлов” при 100 бросках монеты Р100(50) вычислим по формуле Лапласа. Здесь n = 100 ,k = 50 ,p=0,5, q = 0,5 , k - np = 0 , и

.

 

Пример 2. Найти вероятность выпадения от 47 до 57 “орлов” при 100 бросках монеты.

При решении подобных задач ( при n > 15 ) используют интегральную теорему Лапласа: вероятность Рn(k1,k2) появления события в n испытаниях от k1 до k2 раз

Здесь n, p, q те же, что и в примере 1 : n=100 , p = q =0,5 , k1=47 , k2 = 57 .

Функция F вычисляется с помощью таблиц ( см. приложение ).

Функция Ф(x) нечетная: Ф(-х) = - Ф(х) . При х > 5 считают, что Ф(х) = 0,5.

Итак, Р100(47,57) = Ф(1,4) + Ф(0,6). По таблице Ф(1,4) = 0,4192, Ф(0,6) = 0,2257 , поэтому Р100(47,57) = 0,6449.

При небольших значениях вероятности p ( меньших 0,1 ) и больших значениях n более точный результат дает другая приближенная формула - формула Пуассона

, l = np

l называется параметром распределения Пуассона, а сама формула выражает “закон редких явлений” (т. к. p мало).

Пример 3. Первый черновой набор “Методических указаний” на 50 страницах содержит 100 опечаток. Какое из событий вероятнее: на наудачу взятой странице нет опечаток, 1 опечатка, 2 опечатки, 3 опечатки?

Вероятность того, что данная опечатка попадет на наудачу взятую страницу равна 1/50 = 0,02 , число испытаний ( опечаток ) n = 100 . Поскольку p мало, воспользуемся формулой Пуассона с параметром l = np = 2 . Вероятность того, что опечаток нет

( т.к. 0! = 1 )

Другие вероятности

,.

Как видим, наибольший коэффициент при е-2 у Р100(1) и Р100(2).

Ответ: наиболее вероятны 1 или 2 опечатки, их вероятность .

 

– Конец работы –

Эта тема принадлежит разделу:

Теория вероятности

Государственное образовательное учреждение... высшего профессионального образования...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ПОВТОРНЫЕ НЕЗАВИСИМЫЕ ИСПЫТАНИЯ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

МАТЕМАТИКА
(ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА) Методические указания к изучению дисциплины и выполнению контрольной работы № 3 для студентов заочной ф

Санкт-Петербург
Допущено редакционно-издательским советом СПбГИЭУ в качестве методического издания   Составители:   ст. преп.

ОБЩИЕ ПОЛОЖЕНИЯ
Цель дисциплины «Математика (Теория вероятностей и математическая статистика)» - дать необходимый математический аппарат и привить навыки его использования при решении инженерно-экономических задач

СЛУЧАЙНЫЕ СОБЫТИЯ. ОСНОВНЫЕ ПОНЯТИЯ
  Случайным называется событие, которое при осуществлении совокупности некоторых условий S может либо произойти, либо не произойти. Пример: событие А1 - выпадение “шестерки

ВЕРОЯТНОСТНУЮ СХЕМУ
1. Брошены две игральные кости. Какова вероятность того, что на них выпали грани с одинаковым числом очков? Каждому из шести исходов при броске первой кости соответствует

ВЕРОЯТНОСТЯХ
  Относительная частота события А - это отношение числа испытаний, в которых событие фактически появилось (благоприятствующих А) к общему числу проведенных испытаний:

УСЛОВНЫЕ ВЕРОЯТНОСТИ. НЕЗАВИСИМОСТЬ СОБЫТИЙ
  Условная вероятность Р(В / А) = РA(В) - это вероятность осуществления события В при условии, что событие А уже произошло (причем последнее не является невозможным, т.е. Р

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ДИСКРЕТНОГО ТИПА.
  Cлучайной величиной называют величину, которая в результате испытания примет одно и только одно возможное числовое значение из заранее известной совокупности значений. Случайной вел

ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ
  Если F(x) = P(X < x), то функция F(x) называется функцией распределения (интегральной функцией распределения) случайной величины Х, т.е. функция распределения в точке “х” - это в

ВЕЛИЧИНЫ ДИСКРЕТНОГО ТИПА
  Математическое ожидание - важнейшая “характеристика положения” случайной величины. Для дискретной величины она вычисляется по формуле М(Х) = x1 · p1 +

ДИСПЕРСИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ
  Дисперсия - важнейшая «характеристика рассеивания» случайной величины. Рассеивание оценивается относительно среднего значения случайной величины Х - математического ожидания М(Х). И

БИНОМИАЛЬНЫЙ И ПУАССОНОВСКИЙ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ
Биномиальное распределение связано с повторными независимыми испытаниями и формулой Бернулли. Оно задается фиксированным числом испытаний n и вероятностью

Распределение Пуассона.
Приведем примеры, приводящие к случайным величинам, распределенным по закону Пуассона: · Автоматическая телефонная станция получает в среднем за минуту а вызовов. Какова вероятность

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ НЕПРЕРЫВНОГО ТИПА.
  Если возможные значения случайной величины сплошь заполняют некоторый промежуток <a,b> Ì R(быть может, и всюось), то табличный способ задания случайной

ХАРАКТЕРИСТИКИ
  Нормальный (гауссовский) закон распределения задается плотностью распределения по формуле   , -

ДРУГИЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН
  Кроме нормального закона есть и другие случайные величины, часто встречающиеся в приложениях. Приведем некоторые из них. Для равномерного закона плотность вероятност

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ ЗАДАНИЯ № 5
Математическая статиcтика изучает массовые явления и процессы, ставя целью получение выводов по данным наблюдений за ними. В результате появляются утверждения об общих характеристиках таких явлений

Дискретный вариационный ряд
  i

Интервальный вариационный ряд
  Индекс интервала i Число покупателей (интервалы) Частота

Дискретный вариационный ряд
  Номер интервала i Среднее значение интервала Относительная частота

Тема 3.3.Основные предельные теоремы
Неравенство Чебышева: сходимость по вероятности и сходимость по распределению последовательности случайных величин к случайной величине; центрирование и нормирова

Тема 3.5. Статистическое оценивание и проверка гипотез
Статистические оценки (аналоги) числовых характеристик случайных величин; требование к качеству оценок; эмпирическая функция распределения и плотность распределения (гистограмма); вариационная посл

МАТЕМАТИКА
Выполнил: __________ (Фамилия И.О.)________________   студент ____ курса (срок обучения) спец. _____________ группа______№ зачет. к

Перечень контрольных вопросов для проверки знаний по дисциплине
  1. Что такое случайное событие? 2. Какие действия возможны над событиями? 3. Как выглядят формулы классической, геометрической, статистической вероятностей?

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги