Достаточные признаки сходимости положительных рядов

Необходимое и достаточное условие сходимости положительного ряда:Для того чтобы ряд с неотрицательными членами сходился необходимо и достаточно, чтобы последовательность частичных сумм этого ряда была ограничена.

Признаки сравнения:

· (сходимости) - Пусть даны два ряда с неотрицательными членами и и для всех n выполняется неравенство . Тогда если ряд сходится, то ряд тоже сходится;

· (расходимости) - Пусть даны два ряда с неотрицательными членами и и для всех n выполняется неравенство . Тогда если ряд расходится, то ряд тоже расходится.

 

 

Все теоремы сведём в таблицу:

 

  Изучаемый ряд   Известный ряд Вывод
£ − и он сходится − сходится
³ − и он сходится − может и сходиться, и расходиться
£ − и он расходится −может и сходиться, и расходиться
³ − и он расходится − расходится

Признак Даламбера: Пусть дан ряд с положительными членами и существует .

· если q<1 – ряд сходится;

· если q>1 – ряд расходится;

· если q=1 – ряд может и сходиться и расходиться, то есть данный признак неприменим.

Признак Коши: Пусть дан ряд с положительными членами и существует .

· если q<1 – ряд сходится;

· если q>1 – ряд расходится;

· если q=1 – ряд может и сходиться и расходиться, то есть данный признак неприменим.

Интегральный признак: Пусть дан ряд с положительными членами, являющимися значениями некоторой функции f(x), непрерывной и убывающей на полуинтервале [1; +¥). Тогда ряд будет сходиться в том случае, если сходится несобственный интеграл: и расходиться в случае его расходимости.

 

Обобщённый гармонический ряд::

· сходится при a>1;

· расходится при 0<a£1.

Ряд Геометрическая прогрессия Обобщённый гармонический ряд
Сходится |q|<1 a>1
Расходится |q|³1 0<a£1