рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Производные и дифференциалы высших порядков

Производные и дифференциалы высших порядков - раздел Математика, ГЛАВА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ Пусть Функция F(X) Определена И Дифференцируема На Некотором Пр...

Пусть функция f(x) определена и дифференцируема на некотором промежутке X, тогда ее производная (x) также является функцией от x на этом промежутке. Если (x) имеет производную на промежутке X, то эта производная называется производной второго порядкафункции y = f(x) и обозначается: y'' или (x).

Итак, (x) = ((x))'.

Производная от производной второго порядка называетсяпроизводной третьего порядка и обозначается: y''' или (x).

Вообще, производной n-го порядка называется производная от производной
(n – 1)-го порядка и обозначается: y(n) или f (n)(x). Итак, f (n)(x) = (f (n-1)(x))'.

Производные y'', y''', ... называются производными высших порядков.

Пример 1. f (x) =. Найти (x) и (4).

Решение. = =, (x) = –, (x) = = ,

(4) = = = .

Пример 2. Найти производную n-го порядка для функции y = e3x.

Решение. y' = 3e3x, y'' = 3× 3e3x = 32e3x, y''' = 33e3x.

По аналогии находим: y(n) = 3ne3x.

Рассмотрим механический смысл второй производной.

Пусть путь S, пройденный телом по прямой за время t, выражается формулой
S = f(t). Известно, что при этом скорость V в момент времени t равна производной от пути по времени: V = . В момент времени t + Dt скорость получит приращение

DV = V(t + Dt) – V(t).

Отношение называется средним ускорением за время Dt. Ускорением a в данный момент времени называется предел среднего ускорения, когда Dt ® 0:

a = , т.е. a = V'(t) = (S(t))' = S''(t).

Следовательно, ускорение при прямолинейном движении равно второй производной от пути по времени: a = S''(t).

Перейдем к рассмотрению дифференциалов высших порядков.

Пусть y = f(x), xÎX. Дифференциал этой функции y = f'(x)dx является функцией от x (если x – не фиксированное число), dx – приращение аргумента x, оно не зависит от x.

Дифференциал от дифференциала функции называется дифференциалом второго порядка и обозначается d2y или d2f(x).

Итак, d2y = d(dy), но dy= dx, поэтому

d2y = d(dx) = (dx)dx = (dx)2.

Будем вместо (dx)2 писать dx2.

Дифференциалом третьего порядка называется дифференциал от дифференциала второго порядка и обозначается d3y или d3f(x):

d3y = d(d2y) = d(dx2) = dx3 и т.д.

Дифференциалом n-го порядка называется дифференциал от дифференциала
(n – 1)-го порядка dny = d(dn – 1y) = d(f (n – 1)(x)dxn – 1) = f (n)(x)dxn.

Итак, dny = f (n)(x)dxn. Отсюда f (n)(x) = .

Заметим, что выражение производной через отношение дифференциалов часто бывает удобно, поэтому оно широко используется. Так, вместо будем писать: , вместо пишем: .

Пример 3. Найти d3y для функции y = cos2x.

Решение. d3y = y'''dx3. Вычислим y''', находя последовательно y', y'', y''':

y' = (cos2x)' = –2cosxsinx = –sin2x, y'' = (–sin2x)' = –2cos2x, y''' = 4sin2x.

Следовательно, d3y = 4sin2xdx3.

Рассмотрим нахождение производных высших порядков для функций, заданных параметрически и неявно.

Пусть функция y, зависящая от x, задана параметрически уравнениями

, tÎT

(T – некоторый промежуток).

Найдем . Известно, что = = (разд.2.6), поэтому

= = = = .

Аналогично будут вычисляться и т.д.

Пример 4. Функция y от x задана параметрически уравнениями:

, 0£ t £ p.

Найти .

Решение. = = = = –tgt;

= = = -= .

Нахождение производных высших порядков от функций, заданных неявно, рассмотрим на примере.

Пример 5. Найти , для функции, заданной неявно уравнением:
ey + xy = e. Вычислить y'(0), y''(0).

Решение. Найдем сначала y', как описано в в разд. 2.5:

(ey + xy)' = (e)', ey×y' + y + xy' = 0, y'(ey + x) = –y, y' = –.

Для нахождения y'' будем дифференцировать равенство ey×y' + y + xy' = 0, получим:

ey×(y')2 + ey×y'' + y' + y' + xy'' = 0, отсюда найдем y'', затем подставим найденное значение y': y''(ey + x) = –ey×(y')2 – 2y',

y'' = –= = =

= .

Итак, y' = –, y'' = . Подставим x = 0 в исходное уравнение ey + xy = e, получим: ey + 0×y = e, откуда y = 1, значит,

y(0) = 1; y'(0) = –; y''(0) = = .

– Конец работы –

Эта тема принадлежит разделу:

ГЛАВА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ

Основные правила дифференцирования... Установим правила по которым можно находить производные суммы произведения... Теорема Если функции u x v x дифференцируемы в точке x то их сумма дифференцируема в этой точке причем...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Производные и дифференциалы высших порядков

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие производной, ее геометрический и механический смысл
Пусть функция y = f (x) определена в точке x0 и некоторой ее окрестности, x – точка из этой окрестности. Введем обозначения: разность x – x0

Решение
    Если

Производные некоторых элементарных функций
Пусть функция y = f (x) определена на некотором промежутке X, x0ÎX и f(x) дифференцируема в точке x0, т.е. произв

Доказательство
Так как Du = u(x + Dx) – u(x), то u(x + Dx) = u(x) + Du.    

Производные обратных тригонометрических и гиперболических функций
Используя теорему 5 (разд. 2.3) докажем следующие формулы: 1) ; 2)

Дифференцирование функций, заданных неявно. Логарифмическое дифференцирование
Пусть переменные x, y связаны между собой некоторым уравнением F(x, y) = 0, (2.1) причем y является функцией от x, тогда говорят, что функция

Функции, заданные параметрически, и их дифференцирование
Рассмотрим задание линии на плоскости, при котором переменные x, y являются функциями третьей переменной t (называемой параметром):

Дифференциал функции
Пусть функция в точке x0 имеет производную. По определению: =

Решение
1) Dy = (x + Dx)2 – x2 = x2 + 2xDx + (Dx)2 – x2 = 2xDx + (Dx)2

Основные теоремы о дифференцируемых функциях
Теорема Ферма. Пусть функция f(x) определена, непрерывна на интервале (a, b) и в некоторой точке x0 этого интервала принимает свое наи

Правило Лопиталя
В главе 1 мы познакомились с приемами нахождения пределов отношения двух бесконечно малых или бесконечно больших функций, т.е. раскрытия неопределенностей типа

Формула Тейлора
Формула Тейлора является одной из важнейших формул математического анализа, она имеет очень большое число теоретических и практических применений. Рассмотрим предварительно следующую задач

Возрастание и убывание функций
Теорема 1. (Достаточное условие возрастания функции) Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на интервале (

Экстремумы функции
Дадим точные определения точкам максимума и минимума функции. Пусть функция f(x) определена на промежутке X и x0 Î X. Говорят, что в точ

Выпуклость, вогнутость графика функции, точки перегиба
Пусть f(x) – функция, дифференцируемая на интервале (a, b). Рассмотрим кривую, являющуюся графиком функции y = f(x). Кривая, заданная функцией

Асимптоты
При исследовании функции часто приходится устанавливать вид ее графика (а, значит, и характер функции) при неограниченном удалении точки графика от начала координат (при стремлении переменной точки

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги