рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Решение

Решение - раздел Математика, ГЛАВА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ     ...

 
 

Если (x0) существует, то говорят, что функция f (x) дифференцируема в точке x0. Установим связь между дифференцируемостью функции f (x) в точке x0 и ее непрерывностью в этой точке. Напомним, что функция f (x) непрерывна в точке x0, если она определена в точке x0 и некоторой ее окрестности, и выполняется равенство:

Переформулируем это определение, используя понятия приращения аргумента и приращения функции. Из этого равенства получаем:

. (*)

Другими словами, функция f (x) непрерывна в точке x0, если бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

Теорема. Если функция f(x) дифференцируема в точке x0, то она непрерывна в этой точке.

 
 

Доказательство. Дано, что f'(x0) существует, т.е. есть некоторое число. Покажем, что выполняется равенство (*):

Итак, доказано, что f(x) непрерывна в точке x0.

Замечание. Если в точке x0 функция f (x) непрерывна, то в этой точке функция может и не иметь производной, что подтверждается следующим примером.

Пример 2. Функция f(x) = | x | непрерывна в точке x0 = 0, так как .

Покажем, что эта функция не имеет производной в точке x0:

не существует, т.е. f(x) не дифференцируема в точке x0 = 0.

Рассмотрим геометрический смысл производной.

На рис. 2.1 изображен график непрерывной функции y = f (x). Точка M0 на графике имеет координаты x0, f(x0), другая точка графика M – координаты x0 + Dx, f(x0 + Dx). Прямая M0M является секущей для линии y = f(x), она наклонена к оси Ox под углом b. Пусть (x0) существует, т.е. есть некоторое число. Из DM0 получаем: (известно, что tgb – угловой коэффициент прямой M0M). Если Dx ® 0, то точка M движется по графику функции y = f(x), приближаясь к точке M0, при этом секущая M0M, поворачиваясь вокруг точки M0, стремится занять предельное положение, т.е. совпасть с касательной M0K, при этом (a – угол между касательной M0K и осью Ox), tgb ® tga.

Таким образом, но tga = k есть угловой коэффициент касательной M0K.

Итак, угловой коэффициент касательной к графику y = f (x) в точке с абсциссой x0 равен производной функции f(x) в точке x0: (x0) = k = tga.

В этом состоит геометрическое истолкование производной. Очевидно, что уравнение касательной M0K имеет вид: y – f (x0) = (x0)(x – x0).

Переходим к рассмотрению механического смысла производной.

Пусть материальная точка движется прямолинейно неравномерно по закону S = f(t), где t – время, S – путь, проходимый точкой за время t.

Пусть в момент времени t0 точка находилась в положении M0 (рис. 2.2). Поставим задачу: определить скорость материальной точки в момент t0. Рассмотрим другой момент времени
t0 + Dt. За время t0 пройденный точкой путь равен: S0 = f (t0), за (t0 + Dt) пройдено расстояние S = f(t0 + Dt), и точка оказалась в положении M, тогда за время Dt пройден путь M0M и он равен:

S – S0 = f(t0 + Dt) – f(t0) = DS.

Средняя скорость Vср за пpомежуток времени Dt равна: Но средняя скорость может быть различной, в зависимости от промежутка времени Dt. Скоростью в момент времени t0 (обозначим V(t0)) называется предел средней скорости Vср при Dt ® 0. Итак,

Вывод. Производная от пути S = f(t) в момент времени t0 есть скорость в момент времени t0.

– Конец работы –

Эта тема принадлежит разделу:

ГЛАВА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ

Основные правила дифференцирования... Установим правила по которым можно находить производные суммы произведения... Теорема Если функции u x v x дифференцируемы в точке x то их сумма дифференцируема в этой точке причем...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Решение

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие производной, ее геометрический и механический смысл
Пусть функция y = f (x) определена в точке x0 и некоторой ее окрестности, x – точка из этой окрестности. Введем обозначения: разность x – x0

Производные некоторых элементарных функций
Пусть функция y = f (x) определена на некотором промежутке X, x0ÎX и f(x) дифференцируема в точке x0, т.е. произв

Доказательство
Так как Du = u(x + Dx) – u(x), то u(x + Dx) = u(x) + Du.    

Производные обратных тригонометрических и гиперболических функций
Используя теорему 5 (разд. 2.3) докажем следующие формулы: 1) ; 2)

Дифференцирование функций, заданных неявно. Логарифмическое дифференцирование
Пусть переменные x, y связаны между собой некоторым уравнением F(x, y) = 0, (2.1) причем y является функцией от x, тогда говорят, что функция

Функции, заданные параметрически, и их дифференцирование
Рассмотрим задание линии на плоскости, при котором переменные x, y являются функциями третьей переменной t (называемой параметром):

Дифференциал функции
Пусть функция в точке x0 имеет производную. По определению: =

Решение
1) Dy = (x + Dx)2 – x2 = x2 + 2xDx + (Dx)2 – x2 = 2xDx + (Dx)2

Производные и дифференциалы высших порядков
Пусть функция f(x) определена и дифференцируема на некотором промежутке X, тогда ее производная (x) та

Основные теоремы о дифференцируемых функциях
Теорема Ферма. Пусть функция f(x) определена, непрерывна на интервале (a, b) и в некоторой точке x0 этого интервала принимает свое наи

Правило Лопиталя
В главе 1 мы познакомились с приемами нахождения пределов отношения двух бесконечно малых или бесконечно больших функций, т.е. раскрытия неопределенностей типа

Формула Тейлора
Формула Тейлора является одной из важнейших формул математического анализа, она имеет очень большое число теоретических и практических применений. Рассмотрим предварительно следующую задач

Возрастание и убывание функций
Теорема 1. (Достаточное условие возрастания функции) Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на интервале (

Экстремумы функции
Дадим точные определения точкам максимума и минимума функции. Пусть функция f(x) определена на промежутке X и x0 Î X. Говорят, что в точ

Выпуклость, вогнутость графика функции, точки перегиба
Пусть f(x) – функция, дифференцируемая на интервале (a, b). Рассмотрим кривую, являющуюся графиком функции y = f(x). Кривая, заданная функцией

Асимптоты
При исследовании функции часто приходится устанавливать вид ее графика (а, значит, и характер функции) при неограниченном удалении точки графика от начала координат (при стремлении переменной точки

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги