рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Задача 5.

Задача 5. - раздел Математика, ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. Найти Общее Решение Линейного Уравнения: ...

Найти общее решение линейного уравнения: .

 

Уравнение вида , где и известные функции от , линейное (первой степени) относительно функции и ее производной называется линейным.

Посредством замены функции произведением двух вспомогательных функций линейное уравнение сводится к двум уравнениям с разделяющимися переменными относительно каждой из вспомогательных функций.

Уравнение Бернулли , отличающееся от линейного уравнения тем, что в правую часть входит множителем некоторая степень функции , решается так же, как и линейное. Посредством подстановки оно также сводится к двум уравнениям с разделяющимися переменными.

 

Решение. Убедившись, что данное уравнение линейное, полагаем ; тогда и данное уравнение преобразуется к виду

 

или

 

Так как одну из вспомогательных функций или можно взять произвольно, то выберем в качестве какой-либо частный интеграл уравнения .

Тогда для отыскания получим уравнение .

Решая первое из этих уравнений, найдем ; разделяя переменные и интегрируя, найдем его простейший, отличный от нуля частный интеграл:

 

; ; .

 

Подставляя во второе уравнение и решая его, найдем как общий интеграл этого уравнения:

; ; .

Зная и , находим искомую функцию :

 

 

– Конец работы –

Эта тема принадлежит разделу:

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ.

САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ... Кафедра высшей математики и информатики...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Задача 5.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Практические занятия
Неопределенный интеграл. Использование таблиц интегралов. Замена переменной интегрирования. Методы интегрирования по частям. Определенный интеграл. Формула Ньютона-Лейбни

Задача 1
Вычислить неопределенные интегралы по частям. 1. 16.

Задача 2
Вычислить неопределенные интегралы методом замены переменной.   1.

Задача 3
  Вычислить определенные интегралы.   1. 6.

Задача 4
Найти общее решение уравнений с разделяющимися переменными.   1.

Задача 5.
Найти общее решение линейных уравнений или уравнений Бернулли.   1.

Задача 6
Найти общее решение дифференциальных уравнений в полных дифференциалах.   1.

Задача 7
Найти общее решение дифференциальных уравнений, допускающих понижение порядка.   1.

Задача 8
Найти общее решение линейных, неоднородных дифференциальных уравнений с постоянными коэффициентами.   1.

Задача 9
Исследовать на сходимость числовые ряды, используя признаки Даламбера (№1–6), Коши (№7–14), Лейбница (№15–24), сравнения (№25–30).   1.

Задача 10
Определить область сходимости функциональных рядов (№1–15); для степенных рядов (№16–30) найти радиус сходимости и оценить поведение рядов на концах интервала сходимости.  

Задача 11
Разложить в степенной ряд Тейлора следующие функции:   1. в окрестности точки

Задача 1
Вычислить неопределенный интеграл по частям: . Данный метод основан на использовании формулы интегрирования по частям.

Задача 2
Вычислить интеграл методом замены переменной: . Формула замены переменной в неопределенном интеграле имеет вид

Задача 3
Вычислить определенный интеграл: .   Для вычисления определенного интеграла используют формулу Ньютона–Лей

Задача 4
Найти общее решение уравнения с разделяющимися переменными:     Уравнение первого

Задача 6
Найти общее решение дифференциального уравнения в полных дифференциалах: .   Если в уравнении 1-г

Задача 7
Найти общее решение дифференциального уравнения, допускающего понижение порядка: . 1) Уравнение

Задача 8
Найти общее решение линейного, неоднородного дифференциального уравнения с постоянными коэффициентами:   .

Задача 9
Исследовать на сходимость числовой ряд: . Числовым рядом называется выражение

Задача 10
Определить интервал сходимости степенного ряда: . Ряд

Задача 11
Разложить в степенной ряд Тейлора функцию: при . &

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги