рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Правило резолюции

Правило резолюции - раздел Математика, ОСНОВЫ ДИСКРЕТНОЙ МАТЕМАТИКИ Правило Резолюции (Лат. Resolutio – Решение ): Если В...

Правило резолюции (лат. resolutio – решение ): если выражения PAC и QBC являются истинными, то выражение AВ тоже истинно. Формально можем записать:

.

Предложения PAC и QBC называются резольвируемыми (или родительскими), предложение AВ – резольвентой, а формулы С и С – контрарными литералами.

Правило резолюции является более общим правилом логического вывода по сравнению с рассмотренными ранее. Модус поненс и многие другие правила вывода являются частными случаями правила резолюции.

Для доказательства справедливости правила резолюции рассмотрим табл. 4.6.

Таблица 4.6

A B C PAC QBC

 

Как можно видеть, значения функций и совпадают в выделенных серым цветом строках. Этого вполне достаточно для того, чтобы правило резолюции являлось справедливым.

Принцип резолюции описывает способ обнаружения противоречий в базе данных дизъюнктивных выражений. В его основе лежит идея «доказательства от противного». Процесс доказательства состоит из следующих этапов.

1. Исходные аксиомы приводятся к дизъюнктивной форме.

2. К набору аксиом добавляется отрицание доказываемого утверждения в дизъюнктивной форме.

3. Выполняется совместное разрешение этих дизъюнктов, в результате чего получаются новые основанные на них дизъюнктивные выражения.

4. Генерируется пустое выражение, означающее противоречие.

5. Подстановки, использованные для получения пустого выражения, свидетельствуют о том, что отрицание отрицания – истинно.

Пример 4.9. Докажем, что утверждение «Мухтар смертен» следует из утверждений «Мухтар – собака», «Собаки – это животные» и «Все животные смертны». Преобразовывая эти аксиомы в предикатную форму и применяя правило модус поненс, получим следующее.

1. Собаки – это животные: Х(собака(Х)животное(Х)).

2. Мухтар – собака: собака(мухтар).

3. На основе модус поненс и подстановки (мухтар/Х) получим: животное(мухтар).

4. Все животные смертны: Y(животное(Y)умрет(Y)).

5. На основе модус поненс и подстановки (мухтар/Y) получим: умрет(мухтар).

По принципу резолюции эти предикаты необходимо преобразовать в дизъюнктивную форму.

Предикатная форма Дизъюнктивная форма
Х(собака(Х)животное(Х)) собака(Х)животное(Х)
собака(мухтар) собака(мухтар)
Y(животное(Y)умрет(Y)) животное(Y)умрет(Y)

Полученную базу данных можно записать в виде конъюнктивной нормальной формы (КНФ) – т.е. в виде конъюнкции дизъюнктов.

(собака(Х)животное(Х))(животное(Y)умрет(Y))(собака(мухтар)).

К этому выражению с помощью конъюнкцию следует добавить отрицание целевого выражения, в данном случае умрет(мухтар). Выполняя резолюцию, получим новые дизъюнктивные выражения, представленные на рис. 4.2.

 

 
 

 


Рис. 4.2. Доказательство утверждения «Мухтар смертен» методом резолюции

 

Пустой квадрат в нижней части рисунка означает противоречие. При использовании принципа резолюции возможны три случая.

1. Среди текущего множества предложений нет резольвируемых. Это означает, что теорема опровергнута.

2. В результате очередного применения правила резолюции получено пустое предложение. Это означает, что теорема доказана.

3. Процесс не заканчивается, то есть множество предложений пополняется все новыми резольвентами, среди которых нет пустых. Это ничего не означает.

– Конец работы –

Эта тема принадлежит разделу:

ОСНОВЫ ДИСКРЕТНОЙ МАТЕМАТИКИ

ОСНОВЫ ДИСКРЕТНОЙ МАТЕМАТИКИ... Литература...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Правило резолюции

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Счетные и несчетные числовые множества
Теория множеств появилась в конце 19 века благодаря работам немецкого математика Георга Кантора (1845-1918). Понятие множества принадлежит к числу фундаментальных неопределяемых понятий математики.

Позиционные и непозиционные системы
Системой счисления называется метод записи чисел в виде комбинаций графических символов. Число – это некоторая абстрактная сущность для описания количества, а цифры – знаки, ис

Десятичная система
Существуют различные позиционные системы исчисления, отличающиеся между собой количеством используемых знаков. Чтобы различать числа в разных системах исчисления, в конце числа ставят индекс – симв

Двоичная система
Двоичная (бинарная) система счисления является самой простой из всех позиционных систем. Она содержит только два символа 0 и 1, и используется в компьютерной технике благодаря своей простоте и высо

Код Грея
Помимо двоичных чисел на практике применяются и другие коды, использующие два знака: 0 и 1. В этом разделе мы познакомимся с кодом Грея. При сортировке данных естественным представлением является о

Троичная система счисления
Троичная система счисления– позиционная система счисления с целочисленным основанием равным 3. Она существует в двух вариантах: несимметричная и симметричная трои

Восьмеричная и шестнадцатеричная системы счисления
Позиционную систему счисления можно построить по любому основанию. Однако наибольшее практическое значение имеют: двоичная, десятичная, восьмеричная и шестнадцатеричная. Причем, последние две испол

Канторово множество
Математика изобилует парадоксальными объектами. Одним из них является канторово множество. Оно описывается следующим образом. Рассмотрим единичный отрезок, показанный на рис. 3.1. Удалим из

Ковер Серпинского и снежинка Коха
Ковер Серпинского получается из единичного квадрата удалением средней части (1/3, 2/3)*(1/3, 2/3), затем удалением из каждого квадрата (i/3, i+1/3)*(j/3, j+1/3) с

Стохастические фракталы
Стохастические фракталы получаются в том случае, если в итерационном процессе случайным образом менять какие-либо параметры. При этом получаются объекты, очень похожие на природные – несимметричные

Энтропийная размерность
Пусть X – компактное пространство с метрикой d. Тогда множество называется r-плотным

Фрактал Мандельброта
Существует бесконечное множество различных фракталов. Один из них носит имя Мандельброта. Фрактал Мандельброта – это множество точек на комплексной плоскости, для которых итеративная последо

Виды доказательства
Древние греки сформулировали основные правила логического доказательства. Они различали два вида доказательства: дедукцию и индукцию. Дедукция – это доказательство от общего

Переменные и формулы в исчислении высказываний
Переменная, значениями которой являются высказывания, называется пропозициональной переменной. Понятие пропозициональной формулы вводится по индукции

Булевы функции
Функция , у которой аргументы пробегают множество {0,1} и которая принимает значение из того же множества

Предикаты
Применяемые в математике высказывания обычно представляют собой описание свойств каких-либо математических объектов или описаний отношений, существующих между этими объектами. Для анализа закономер

Семантика исчисления предикатов
Исчисление предикатов (так же как и исчисление высказываний) являются, прежде всего, языками. И эти языки можно применять не только в математике. Используя их слова, фразы и предложения, мы можем п

Равно(плюс(два, три), пять)
«Некоторые люди любят грибы» X(личность(Х)

Правила логического вывода
Возможность логически выводить новые правильные выражения из набора истинных утверждений – это важное свойство исчисления предикатов. Логически выведенные выражения корректны, потому что они совмес

Парадокс Рассела
Задание множеств характеристическим предикатом может приводить к противоречиям. Например, все рассмотренные в примерах множества не содержат себя в качестве элемента. Рассмотрим множество всех множ

Сравнение множеств
Множество содержится в множестве

Свойства операций над множествами
Пусть задан универсум . Тогда

Проблема континуума
Кантор был первым, кто стал рассматривать мощности (кардинальные числа) бесконечных множеств. Мощность счетного множества он обозначил древнееврейской буквой «алеф» с нулевым индексом:

Сумма нечетных чисел
Математическая индукция играет огромную роль в дискретной математике (именно в силу ее дискретного характера). Полученные этим методом доказательства в данной области математики почти столь же наде

Сумма натуральных чисел
А теперь используем метод индукции для доказательства того, что сумма первых n положительных целых чисел равна

Снова считаем подмножества
Доказывая теорему 5.1. мы неявно пользовались методом математической индукции. Теперь пришло время применить его явно. Итак, мы подозреваем, что число всех подмножеств множества из n элемент

Биномиальные коэффициенты
Слово бином означает выражение, состоящее из двух членов, например: x + y. Бином является частным случаем полинома. Биномом Ньютона наз

Треугольник Паскаля
Французский математик Блез Паскаль (1623-1662) составил таблицу из биномиальных коэффициентов. Она получилась треугольной, поскольку с увеличением степени бинома количество коэффициентов также увел

Бином Ньютона для дробных и отрицательных показателей
Формула бинома Ньютона (6.1) для целых положительных показателей была известна задолго до Исаака Ньютона (1643-1727), но им в 1676 году была указана возможность распростране

Гамма-функция
Биномиальная теорема определяет биномиальные коэффициенты через факториалы чисел n и k:

Размещения без повторений
Общее число размещений без повторений из n элементов по k элементов обычно обозначается так:

Сочетания без повторений
Число различных сочетаний без повторений обычно обозначается так: . Или так

Размещения с повторением
Если мы выбираем из множества n элементов размещения с повторениями k элементов, то в данном случае k может превосходить n. Теорема 7.3. Об

Сочетания с повторением
Теорема 7.4. Общее число сочетаний с повторениями k элементов, взятых из совокупности n различных элементов, равно

Формула Стирлинга
Рассматривая комбинаторные задачи, мы часто сталкиваемся с факториалами. Факториал – это очень быстро растущая функция, она растет быстрее экспоненты. При достаточно больших n (n >

Подстановки
Взаимно однозначная функция называется подстановкой на

Задача Фибоначчи
Итальянский математик Леонардо Фибоначчи жил в 13 столетии и одним из первых в Европе стал использовать арабские (индийские) цифры. Он придумал несколько искусственную задачу о кроликах, которых вы

Сумма чисел Фибоначчи
Определим сумму первых n чисел Фибоначчи. 0 = 0, 0+1 = 1, 0+1+1 = 2, 0+1+1+2 = 4, 0+1+1+2+3 = 7, 0+1+1+2+3+5 = 12, 0+1+1+2+3+5+

Формула для чисел Фибоначчи
Теорема 8.1. Числа Фибоначчи можно рассчитать по формуле .

Простые числа
Все натуральные числа, большие единицы, распадаются на два класса. К первому относятся числа, имеющие ровно два натуральных делителя, единицу и самого себя, ко второму – все остальные. Числа первог

Алфавитное кодирование
Кодирование может сопоставлять код всему сообщению из множества

Помехоустойчивое кодирование
Пусть имеется канал связи C, содержащий источник помех: , где S – множес

Модулярная арифметика
В этом разделе все числа – целые. Говорят, что число a сравнимо по модулю n с числом b (обозначение

Шифрование с открытым ключом
Шифрование с открытым ключом производится следующим образом. 1. Получателем сообщений производится генерация открытого ключа (пара чисел n и e) и закрытого ключа (число d

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги