рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ПАРАБОЛА.

ПАРАБОЛА. - раздел Математика, МАТРИЦЫ И ИХ ВИДЫ   Определение 11.1. Параболой Называетс...

 

ОПРЕДЕЛЕНИЕ 11.1. Параболой называется множество всех точек плоскости, равноудаленных от данной точки, называемой фокусом, и данной прямой, называемой директрисой.

Выберем на плоскости произвольную точку и произвольную прямую , не проходящую через эту точку. Назовем точку фокусом, а прямую директрисой. Обозначим расстояние от точки до прямой через и построим систему координат так, как это изображено на рис.16.

 

Тогда фокус будет расположен в точке , а директриса будет иметь уравнение .

Пусть точка произвольная точка плоскости . Предположим, что точка лежит на параболе. Тогда, по определению этой кривой , где ^. Точка по построению имеет координаты . Следовательно, равенство запишется в виде

.

Освобождаясь от иррациональности, получим

. (20)

Пусть точка не лежит на параболе. Тогда . Следовательно, и .

Итак, согласно определению 1.1 уравнения плоской кривой уравнение (20) является уравнением искомой параболы. Оно называется каноническим уравнением параболы, а число называется ее параметром.

Определим форму параболы. В уравнение (20) переменная входит в четной степени. Следовательно, кривая симметрична относительно оси . При . Значит, кривая проходит через начало координат. При , Æ, так как по условию . При существует, причем при увеличении переменная также увеличивается. По полученным данным построим параболу (рис.16).

Терминология. Точка называется фокусом параболы. Точка называется вершиной параболы. Прямая называется директрисой. Ось, на которой расположен фокус, называется фокальной осью. Расстояние от фокуса до директрисы называется параметром параболы.

Дополнение. Если фокальную ось параболы принять за ось , то уравнение параболы запишется в виде

. (21)

ПРИМЕР 11.1. Найти фокус и уравнение директрисы параболы .

Решение. Так как каноническое уравнение параболы имеет вид , то . Следовательно, , а . Фокус параболы расположен в точке . Директриса имеет уравнение .

 

– Конец работы –

Эта тема принадлежит разделу:

МАТРИЦЫ И ИХ ВИДЫ

ОПЕРАЦИИ НАД МАТРИЦАМИ... Равенство матриц... Две матрицы А и В называются равными А В если они имеют одинаковые размеры и их соответствующие элементы равны...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ПАРАБОЛА.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

МАТРИЦЫ И ИХ ВИДЫ.
ОПРЕДЕЛЕНИЕ 1.1. Прямоугольная таблица, составленная из чисел, называется матрицей. Дл

Сложение матриц.
  Пусть даны матрицы А=(aij) и В=(bij), имеющие одинаковые размеры .

Умножение матрицы на число.
Произведением матрицы А=(аij) размеров на число l называется матрица В=

Умножение матриц.
Пусть заданы матрица А размеров и матрица в размеров

ОПРЕДЕЛИТЕЛИ ВТОРОГО ПОРЯДКА.
Пусть дана квадратная матрица второго порядка . ОПРЕДЕЛЕНИЕ 3.1. Опреде

ОПРЕДЕЛИТЕЛИ ТРЕТЬЕГО ПОРЯДКА.
  Пусть дана квадратная матрица третьего порядка .

ОБРАТНАЯ МАТРИЦА.
  Пусть дана квадратная матрица А порядка n. . ОПРЕДЕ

ОБЩИЕ ПОНЯТИЯ.
  Определители и матрицы широко применяются при решении систем линейных уравнений, т.е. систем, содержащих m уравнений первой степени относительно n неизвестных x

ФОРМУЛЫ КРАМЕРА.
  Пусть задана система линейных уравнений, содержащая одинаковое число уравнений и неизвестных (m=n):

МЕТОДОМ ГАУССА.
  Пусть задана система из m линейных уравнений с n неизвестными: (27)

ЛИНЕЙНЫХ УРАВНЕНИЙ.
  Если при исследовании какой-либо технологической задачи вы получаете систему линейных алгебраических уравнений, то всегда можно ответить на вопрос, сколько решений она имеет, и найт

СКАЛЯРНЫЕ И ВЕКТОРНЫЕ ВЕЛИЧИНЫ.
  ОПРЕДЕЛЕНИЕ 11.1. Величина, определяемая заданием своего численного значения, называется скалярной величиной. ОПРЕДЕЛЕНИЕ 1

ЛИНЕЙНЫЕ ОПРЕЦИИ НАД ВЕКТОРАМИ.
Операции сложения и вычитания векторов и умножения вектора на число называются линейными операциями над векторами. ложение векторов.

ВЕКТОРА НА ОСЬ.
  Пусть заданы векторы и

ЛИНЕЙНАЯ КОМБИНАЦИЯ ВЕКТОРОВ. БАЗИС.
  Пусть заданы векторы и числа

ПРЯМОУГОЛЬНАЯ ДЕКАРТОВАЯ СИСТЕМА КООРДИНАТ.
  Пусть в пространстве векторы

ЗАДАННЫМИ В КООРДИНАТНОЙ ФОРМЕ.
  Пусть векторы и

Задачи определения расстояния между двумя точками.
  Пусть в пространстве

Задача деления отрезка в данном отношении.
  Пусть даны две точки и

СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ.
  Пусть даны два вектора и

Свойства скалярного произведения векторов.
1) ; 2) , ес

ВЕКТОРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ.
ОПРЕДЕЛЕНИЕ. Векторным произведением вектора на вектор

СМЕШАННОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ.
  Пусть даны три вектора . Так как для векторов введены два вида произведений – скалярное и век

II. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ.
Введение.   Аналитическая геометрия как наука занимается изучением свойств геометрических объектов средствами алгебры. Основным методом этой науки явл

Уравнение прямой по двум точкам.
  Пусть на плоскости даны две точки

Окружность.
  В следующих параграфах рассматриваются геометрические образы алгебраического уравнения второй степени относительно двух переменных:

ГИПЕРБОЛА.
  ОПРЕДЕЛЕНИЕ 10.1. Гиперболойназывается множество всех точек плоскости, абсолютная величина разности расстояний каждой из которых от двух данных

Уравнение кривых второго порядка с осями симметрии, параллельными осями координат.
  Рассмотрим предварительно одну из частных задач преобразования системы координат. Пусть на плоскости введены две прямоугольные декартовы системы координат

Исследование уравнения кривой второго порядка, не содержащего члена с произведением текущих координат.
  Пусть задано общее уравнение кривой второго порядка (12) при , т.е. уравнение вида

Неравенства второй степени относительно двух переменных.
  ОПРЕДЕЛЕНИЕ 14.1. Неравенство (или

Плоскость. Уравнение плоскости по точке и нормальному вектору.
Положение плоскости в пространстве

Уравнение плоскости по трем точкам.
Пусть в пространстве даны три точки

Общее уравнение плоскости.
Пусть задано произвольное алгебраическое уравнение первой степени относительно переменных

Угол между плоскостями.
  Пусть в заданы своими уравнениями две плоскости

Уравнение прямой по двум ее точкам.
  Пусть прямая проходит через данные точки

Общие уравнения прямой.
  Пусть в пространстве даны своими уравнениями

Угол между двумя прямыми.
  Пусть в пространстве даны две прямые

Угол между прмой и плоскостью.
       

Точка пересечения прямой с плоскостью.
  Пусть прямая пересекает плоскость

Поверхности второго порядка.
  В нижеследующих параграфах рассматриваются некоторые геометрические образы алгебраических уравнений второй степени относительно трех переменных:

Цилиндрические поверхнсоти.
  Поверхность, образованная всеми прямыми, проходящими параллельно данной прямой через точки ли

Эллипсоид.
  Одним из основных методов изучения поверхности, заданной своим уравнением, является метод сечений. В этом методе предлагается определять вид поверхности по ее линиям пересечения с р

Эллиптический параболоид.
  Пусть задано уравнение , где

Однополостный гиперболоид.
  Однополостным гиперболоидом назвается поверхность, определяемая уравнением

Двуполостной гипрболоид.
  Двуполостным гиперболоидом называется поверхность, заданная уравнением

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги