рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Метод Гаусса решения линейных систем.

Метод Гаусса решения линейных систем. - раздел Математика, Основные свойства определителей Замечание. Линейная Система (2.2) Может Иметь Единственное Решение, Бесконечн...

Замечание. Линейная система (2.2) может иметь единственное решение, бесконечно много решений или не иметь ни одного решения.

 

Примеры:

1. . Единственным решением является пара чисел х = 1, у = 2.

2. . Решением этой системы будут любые два числа х и у, удовлетворяющие условию у = 3 – х. Например, х=1, у=2; х=0, у=3 и т. д.

3.. Очевидно, что эта система не имеет решений, так как разность двух чисел не может принимать двух различных значений.

Условия существования и количества решений линейной системы будут изучены в дальнейшем, а пока рассмотрим способы нахождения единственного решения системы,

в которой число уравнений равно числу неизвестных: (2.3)

Пусть (этого всегда можно добиться, поменяв уравнения местами). Разделим обе части первого уравнения на и вычтем полученное уравнение из каждого из остальных уравнений системы, умножив его предварительно на где i – номер очередного уравнения. Как известно, полученная при этом новая система будет равносильна исходной. Коэффициенты при во всех уравнениях этой системы, начиная со второго, будут равны 0, т.е. система выглядит так:

.

Если новые коэффициенты при х2 не все равны нулю, можно таким же образом исключить из третьего и последующих уравнений. Продолжая эту операцию для следующих неизвестных, приведем систему к так называемому треугольному виду:

. (2.4)

Здесь символами и обозначены изменившиеся в результате преобразований числовые коэффициенты и свободные члены.

Из последнего уравнения системы (2.4) единственным образом определяется , а затем последовательной подстановкой – остальные неизвестные.

 

Замечание. Иногда в результате преобразований в каком-либо из уравнений обращаются в 0 все коэффициенты и правая часть, то есть оно превращается в тождество 0=0. Исключив его из системы, мы уменьшим число уравнений по сравнению с числом неизвестных. Такая система не может иметь единственного решения.

Если же в процессе применения метода Гаусса какое-нибудь уравнение превратится в равенство вида 0=1 (коэффициенты при неизвестных обратились в 0, а правая часть приняла ненулевое значение), то исходная система не имеет решения, так как подобное равенство является неверным при любых значениях неизвестных.

 

Примеры:

1. Решим методом Гаусса систему

Вычтем из второго уравнения удвоенное первое, а из третьего – первое, умноженное на 5.

Получим: . Теперь вычтем из третьего уравнения удвоенное второе, а затем разделим второе уравнение на –7 (коэффициент при у), а третье – на 15 (новый коэффициент при z). Система примет вид:

. Отсюда z=3, y=2, x=1 – единственное решение системы.

 

2. Система после исключения х из второго и третьего уравнений примет вид: . Если затем вычесть второе уравнение из третьего, то последнее уравнение станет тождеством 0=0. В системе осталось два уравнения: . Ее решение можно записать в виде: х = -2, у – любое число, z = 7 – y. Таким образом, система имеет бесконечно много решений.

 

3. . Применив к этой системе метод Гаусса, получим ,

откуда . Последнее равенство является неверным при любых значениях неизвестных, следовательно, система не имеет решения.

 

 

– Конец работы –

Эта тема принадлежит разделу:

Основные свойства определителей

Определение матрицы Определители второго и третьего порядков их основные свойства Миноры и алгебраические дополнения разложение определителя по... Определение Матрицей называется прямоугольная таблица чисел...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Метод Гаусса решения линейных систем.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные свойства определителей.
Сформулируем и докажем основные свойства определителей 2-го и 3-го порядка (доказательство проведем для определителей 3-го порядка).   Свойство 1. Определитель не изме

Разложение определителя по строке.
  Определение1. 7. Минором элемента определителя называется определитель, полученный из данного путем вычеркивания строки и столбца, в которых стоит выбранный

Лекция 2. Системы линейных уравнений. Метод Гаусса. Правило Крамера.
Определение 2.1. Линейными операциями над какими-либо объектами называются их сложение и умножение на число.   Определение 2.2. Линейно

Правило Крамера.
  Рассмотрим систему (2.3). Назовем главным определителем этой системы определитель , элем

Перемножение матриц.
Выше было указано, что сложение матриц накладывает условия на размерности слагаемых. Умножение матрицы на матрицу тоже требует выполнения определенных условий для размерностей сомножителей, а именн

Обратная матрица.
  Определение 3.7. Квадратная матрица А называется вырожденной, если , и не

Решение линейных систем с помощью обратной матрицы.
Рассмотрим линейную систему (2.3): и введем следующие обозначения:

Теорема о ранге.
  Определение 4.3. Базисным минором матрицы называется любой ее ненулевой минор, порядок которого равен рангу матрицы.   Определение

Совместность линейных систем.
  Определение 4.5. Линейная система называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет решений.

Общее решение однородной линейной системы.
Рассмотрим однородную линейную систему . (4.2) Отметим, что такая система всегда совместна, поскольку и

Структура общего решения неоднородной линейной системы.
  Рассмотрим неоднородную линейную систему (2.2): . Докажем следующие свойства ее решений

Лекция 5.
Векторы. Линейные операции над векторами. Проекция вектора на ось. Декартовы координаты векторов и точек. Скалярное произведение векторов, его основные свойства, координатное выражение. &n

A a+(b+c)=OA+(AB+BC)=OA+AC=OC.
Свойство 2 доказано. b+с O cС Свойство 3. Для любого

Базис и координаты вектора.
  Определение 5.7. Линейной комбинацией векторов а1, а2,…,аnназывается выражение вида: k1

Скалярное произведение векторов.
  Определение 5.14. Скалярным произведением двух векторов называется произведение их модулей на косинус угла между ними: ab =

Векторное произведение векторов.
  Определение 6.2. Вектор с называется векторным произведениемвекторов аи b, если:

Смешанное произведение векторов.
Определение 6.4. Смешанным произведением векторов а, bи с называется результат скалярно

Прямая на плоскости.
  Рассмотрим различные виды уравнений прямой на плоскости. Пусть прямая проходит через точку М0 (x0,y0) перпендикулярно вектору

Неполные уравнения прямой.
Уравнение (7.4) называется полным, если коэффициенты А,В и С не равны нулю, и неполным, если хотя бы одно из этих чисел равно нулю. Рассмотрим возмож

Угол между прямыми. Условия параллельности и
перпендикулярности двух прямых.   1. Если прямые L1 и L2 заданы общими уравнениями А1х + В1у + С1 = 0 и А

Плоскость в пространстве.
  Получим сначала уравнение плоскости, проходящей через точку М0(х0 ,у0 ,z0) перпендикулярно вектору n

Неполные уравнения плоскости.
Если хотя бы одно из чисел А, В, С, D равно нулю, уравнение (8.2) называют неполным. Рассмотрим возможные виды неполных уравнений: 1) D = 0 – плоскость Ax + By +

Перпендикулярности плоскостей.
Если две плоскости (α1 и α2) заданы общими уравнениями вида: A1x+B1y+C1z+D1=0 и A2x+B2

Прямая в пространстве.
  Замечание. Прямую в пространстве невозможно задать одним уравнением. Для этого требуется система двух или более уравнений. Первая возможность составить уравнения прямой в п

Угол между прямыми. Угол между прямой и плоскостью.
  Угол между прямыми в пространстве равен углу между их направляющими векторами. Поэтому, если две прямые заданы каноническими уравнениями вида

Кривые второго порядка. Эллипс, гипербола и парабола, их свойства и канонические уравнения.
Определение 9.1. Кривыми второго порядкана плоскости называются линии пересечения кругового конуса с плоскостями, не проходящими через его вершину.  

Эллипс.
Определение 9.2. Эллипсомназывается множество точек плоскости, для которых сумма расстояний до двух фиксированных точек F1 и F2 этой плос

Гипербола.
Определение 9.5. Гиперболойназывается множество точек плоскости, для которых модуль разности расстояний до двух фиксированных точек F1 и F2

Парабола.
  Определение 9.8. Параболой называется множество точек плоскости, для которых расстояние до некоторой фиксированной точки F этой плоскости равно рассто

Эллипсоид.
Определение 10.2. Эллипсоидом называется поверхность, которая в некоторой системе прямоугольных декартовых координат определяется уравнением

Гиперболоиды.
  Определение 10.3. Гиперболоидами называются поверхности, которые в некоторой системе прямоугольных декартовых координат определяются каноническими ура

Параболоиды.
Определение 10.4. Параболоидаминазываются поверхности, которые в некоторой системе прямоугольных декартовых координат определяются каноническими уравнениями

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги