рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Свойства отношений

Свойства отношений - Лекция, раздел Математика, Глава 1. Высказывания   Отношение, Заданное На Множестве, Может Обладать Рядом Свойст...

 

Отношение, заданное на множестве, может обладать рядом свойств, а именно:

1. Рефлексивность

Определение. Отношение R на множестве Х называется рефлексивным, если каждый элемент х множества Х находится в отношении R с самим собой.

Используя символы, это отношение можно записать в таком виде:

R рефлексивно на Х Û ("х Î Х) х R х

Пример. Отношение равенства на множестве отрезков рефлексивно, т.к. каждый отрезок равен себе самому.

Граф рефлексивного отношения во всех вершинах имеет петли.

 

2. Антирефлексивность

Определение. Отношение R на множестве Х называется антирефлексивным, если ни один элемент х множества Х не находится в отношении R с самим собой.

R антирефлексивно на Х Û ("х Î Х)

Пример. Отношение «прямая х перпендикулярна прямой у» на множестве прямых плоскости антирефлексивно, т.к. ни одна прямая плоскости не перпендикулярна самой себе.

Граф антирефлексивного отношения не содержит ни одной петли.

 

Заметим, что существуют отношения, не являющиеся ни рефлексивными, ни антирефлексивными. Например, рассмотрим отношение «точка х симметрична точке у» на множестве точек плоскости.

· у

l

х

 

Точка х симметрична точке х – истинно; точка у симметрична точке у – ложно, следовательно, мы не можем утверждать, что все точки плоскости симметричны сами себе, также мы не можем и утверждать, что ни одна точка плоскости не симметрична сама себе.

 

3. Симметричность

Определение. Отношение R на множестве Х называется симметричным, если из того, что элемент х находится в отношении R с элементом у, следует, что и элемент у находится в отношении R с элементом х.

R симметрично на Х Û ("х, у Î Х) х R у Þ у R х

Пример. Отношение «прямая х пересекает прямую у на множестве прямых плоскости» симметрично, т.к. если прямая х пересекает прямую у, то и прямая у обязательно будет пересекать прямую х.

Граф симметричного отношения вместе с каждой стрелкой из точки х в точку у должен содержать стрелку, соединяющую те же точки, но в обратном направлении.

 

4. Асимметричность

Определение. Отношение R на множестве Х называется асимметричным, если ни для каких элементов х, у из множества Х не может случиться, что элемент х находится в отношении R с элементом у и элемент у находится в отношении R с элементом х.

R асимметрично на Х Û ("х, у Î Х) х R у Þ

Пример. Отношение «х < у» асимметрично, т.к. ни для какой пары элементов х, у нельзя сказать, что одновременно х < у и у < х.

Граф асиметричного отношения не имеет петель и если две вершины графа соединены стрелкой, то эта стрелка только одна.

 

5. Антисимметричность

Определение. Отношение R на множестве Х называется антисимметричным, если из того что х находится в отношении с у, а у находится в отношении с х следует, что х = у.

R антисимметрично на Х Û ("х, у Î Х) х R у Ù у R х Þ х = у

Пример. Отношение «х £ у» антисимметрично, т.к. условия х £ у и у £ х одновременно выполняются только тогда, когда х = у.

Граф антисимметричного отношения имеет петли и если две вершины графа соединены стрелкой, то эта стрелка только одна.

 

6. Транзитивность

Определение. Отношение R на множестве Х называется транзитивным, если для любых элементов х, у, z из множества Х из того, что х находится в отношении с у, а у находится в отношении с z следует, что х находится в отношении с z.

R транзитивно на Х Û ("х, у, z Î Х) х R у Ù у R z Þ х R z

Пример. Отношение «х кратно у» транзитивно, т.к. если первое число кратно второму, а второе кратно третьему, то первое число будет кратно третьему.

Граф транзитивного отношения с каждой парой стрелок от х к у и от у к z содержит стрелку, идущую от х к z.

 

7. Связность

Определение. Отношение R на множестве Х называется связным, если для любых элементов х, у из множества Х х находится в отношении с у или у находится в отношении с х или х = у.

R связно на Х Û ("х, у, z Î Х) х R у Ú у R z Ú х = у

Другими словами: отношение R на множестве Х называется связным, если для любых различных элементов х, у из множества Х х находится в отношении с у или у находится в отношении с х или х = у.

Пример. Отношение «х < у» связно, т.к. какие бы мы действительные числа не взяли, обязательно одно из них будет больше другого или они равны.

На графе связного отношения все вершины соединены между собой стрелками.

Пример. Проверить, какими свойствами обладает

отношение «х – делитель у», заданное на множестве

Х = {2; 3; 4; 6; 8}.

Построим граф данного отношения:

 

 

1) данное отношение рефлексивно, т.к. каждое число из данного множества является делителем самого себя;

2) свойством антирефлексивности данное отношение не обладает;

3) свойство симметричности не выполняется, т.к. например, 2 является делителем числа 4, но 4 делителем числа 2 не является;

4) данное отношение антисимметрично: два числа могут быть одновременно делителями друг друга только в том случае, если эти числа равны;

5) отношение транзитивно, т.к. если одно число является делителем второго, а второе – делителем третьего, то первое число обязательно будет делителем третьего;

6) отношение свойством связности не обладает, т.к. например, числа 2 и 3 на графе стрелкой не соединены, т.к. два различных числа 2 и 3 делителями друг друга не являются.

Таким образом, данное отношение обладает свойствами рефлексивности, асимметричности и транзитивности.

 

– Конец работы –

Эта тема принадлежит разделу:

Глава 1. Высказывания

Курс лекций по математике...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Свойства отношений

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Законы алгебры высказываний
  1. Коммутативные законы А Ù В º В Ù А А Ú В º В Ú А 2. Ассоц

Понятие множества. Элемент множества. Пустое множество
Множество – основное понятие математики и поэтому не определяется через другие. Обычно под множеством понимают совокупность предметов, объединенных по общему признаку. Так, можно говорить

Отношения между множествами. Графическая иллюстрация множеств
  Определение. Если множества А и В имеют общие элементы, т.е. элементы, принадлежащие одновременно множествам А и В, то говорят, что эти множества

Законы операций над множествами
  1. Коммутативные законы А Ç В = В Ç А А È В = В È А 2. Ассоциативные з

Число элементов объединения двух и трех конечных множеств
  В математике часто приходится решать задачи, в которых требуется определить число элементов в множестве, либо в объединении или пересечении множеств. Условимся число элемен

Упорядоченная пара. Декартово произведение двух множеств
  Рассмотрим задачу: используя цифры 1, 2, 3, образуйте все возможные двузначные числа. Запись каждого числа состоит из двух цифр, причем существенен порядок их следования (ч

Взаимно однозначное соответствие
Определение. Отображением f множества Х в множество Y называется такое соответствие между множествами Х и Y, при котором каждому элемен

Равномощные множества. Счетные и несчетные множества
Определение. Два множества Х и Y равномощны, если существует взаимно однозначное отображение множества Х на множество Y. (Обозначают: Х ~ Y).

Виды функций
  1. Постоянная функция. Определение. Постоянной называется функция, заданная формулой у = b, где b - некоторое число.

Обратная функция
  Пусть функция у = f (х) задает инъективное отображение числового множества Х в множество действительных чисел R (т.е. различным значения

Отношение порядка. Упорядоченные множества
  Определение. Отношение R на множестве Х называется отношением порядка, если оно транзитивно и асимметрично или антисимметрично. Определение. Отн

Высказывания с кванторами и их отрицания
Если задан предикат, то, чтобы превратить его в высказывание, достаточно вместо каждой из переменных, входящих в предикат, подставить ее значение. Например, если на множестве натуральных ч

Отношение следование и равносильности между предложениями. Необходимое и достаточное условие
  Часто встречаются такие предикаты, что из истинности одного из них следует истинность другого. Например, можно сказать, что из предиката А (х): «число х кратно

Строение и виды теорем
Теорема – это высказывание, истинность которого устанавливается посредством рассуждения (доказательства). С логической точки зрения теорема представляет собой высказывание вида А &T

Определение понятия. Требования к определению понятия
Появление в математике новых понятий, а значит, и новых терминов, обозначающих эти понятия, предполагает их определение. Определением обычно называют предложение, разъясняющее суть нового

Умозаключения и их виды
  Умозаключение (рассуждение) – это способ получения нового знания на основе некоторого имеющегося. Умозаключение состоит из посылок и заключения. Посылки – это выск

Схемы дедуктивных умозаключений
  Умозаключение дает истинное заключение, если исходные посылки истинны и соблюдены правила вывода, или, как их еще называют, схемы дедуктивных умозаключений. Рассмотрим наиб

Проверка правильности умозаключений
В логике существуют различные способы проверки правильности умозаключений. Один из них – с использованием кругов Эйлера. Данное умозаключение вначале записывают на теоретико-множественном

Способы математического доказательства
Доказать какое-либо утверждение – это значит показать, что это утверждение логически следует из системы истинных и связанных утверждений. В логике считают, что если рассматриваемое утвержд

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги