рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Правила умножения и сложения

Правила умножения и сложения - раздел Математика, Учебное пособие предназначено для студентов гуманитарных специальностей, изучающих математику по технологии индивидуализированного обучения Для Того Чтобы Найти Число Всех Возможных Исходов Независимого...

Для того чтобы найти число всех возможных исходов независимого проведения двух испытаний А и В, следует перемножить число всех исходов испытания А и число всех исходов испытания В.

Правило умножения для двух независимых испытаний удобно объяснять, используя прямоугольники, разбитые на квадратики, или прямоугольные таблицы. Но если проводятся три испытания, то для иллюстрации надо использовать и длину, и ширину, и высоту, и на картинке получится прямоугольный параллелепипед, разбитый на кубики. Здесь уже рисунок и объяснения становятся сложнее, поскольку, например, будут невидимые кубики. Еще хуже дело обстоит с четырьмя испытаниями. В этом случае для рисунка нам просто не хватит измерений, ведь окружающее нас пространство всего лишь трехмерно.

Оказывается, правило умножения для трех, четырех и т. д. испытаний можно объяснить, не выходя за рамки плоскости, с помощью геометрической модели, которую называют деревом возможных вариантов. Она, во-первых, наглядна как всякая картинка, и, во-вторых, позволяет все учесть, ничего не пропустив.

Пример 3. Несколько стран в качестве символа своего государства решили использовать флаг в виде трех горизонтальных полос одинаковых по ширине, но разных по цвету: белый, синий, красный. Сколько стран могут использовать такую символику при условии, что у каждой страны свой, отличный от других, флаг?

Решение. Будем искать решение с помощью дерева возможных вариантов (рис. 4.1). Посмотрим на его левую «веточку», идущую от «флага», пусть верхняя полоса – белого цвета, тогда средняя полоса может быть синей или красной, а нижняя – соответственно, красной или синей. Получилось два варианта цветов полос флага: белая, синяя, красная и белая, красная, синяя.

Пусть теперь верхняя полоса – синего цвета, это вторая «веточка».

Рисунок 4.1

Тогда средняя полоса может быть белой или красной, а нижняя – соответственно, красной или белой. Получилось еще два варианта цветов полос: синяя, белая, красная и синяя, красная, белая.

Аналогично рассматривается случай для верхней полосы красного цвета. Получится еще два варианта: красная, белая, синяя и красная, синяя, белая полосы флагов. Всего 6 комбинаций.

Ответ: 6.

Построенная схема действительно напоминает дерево, только перевернутое. Видимо, поэтому ее и называют деревом возможных вариантов.

Вот как, например, выглядит дерево возможных вариантов для примера 1 (рисунок 4.2):

Для следующего примера мы приведем три различных способа решения: с помощью простого перебора, с помощью дерева вариантов и по правилу умножения.

 

 

Рисунок 4.2

Пример 4. В коридоре висят три лампочки. Сколько имеется различных способов освещения коридора?

Решение.

Первый способ. Пронумеруем лампочки и будем писать «+» или «-» в зависимости от того, горит или не горит очередная лампочка. Тогда все способы освещения можно просто перечислить: + + +, + + -, + - +, - + +, + - -, - + -, - - +,

Всего 8 способов.

Второй способ. Дерево возможных вариантов представлено на рисунке 4.3. С его помощью находим, что осветить коридор можно 8 способами.

Третий способ. Первая лампочка может или гореть, или не гореть, т.е. имеется два возможных исхода. То же самое относится и ко второй, и к третьей лампочкам. Мы предполагаем, что лампочки горят или нет независимо друг от друга. По

Рисунок 4.3 правилу умножения получаем, что число всех способов освещения равно 2 • 2 • 2 = 8.

Ответ: 8.

У каждого из этих трех способов решения в каждом конкретном случае есть свои преимущества и свои недостатки. Выбор способа решения – за вами! Отметим все же, что правило умножения позволяет в один шаг решать самые разнообразные задачи. Например, оно приводит к крайне важному в математике понятию факториала. Рассмотрим сначала примеры.

Пример 5. В семье – 6 человек, и за столом в кухне стоят 6 стульев. В семье решили каждый вечер, ужиная, рассаживаться на эти 6 стульев по-новому. Сколько дней члены семьи смогут делать это без повторений?

Решение. Ответ оказывается неожиданно большим: почти два года! Объясним его. Для удобства рассуждений будем считать, что семья (бабушка, дедушка, мама, папа, дочь, сын) будет рассаживаться на стулья поочередно. Нас интересует, сколько всего существует различных способов их размещения на стульях.

Предположим, что первой усаживается бабушка. У нее имеется 6 вариантов выбора стула. Вторым садится дедушка и независимо выбирает стул из 5 оставшихся. Мама делает свой выбор третьей и выбор у нее будет из 4 стульев. У папы будет уже 3 варианта, у дочки – 2, ну а сын сядет на единственный незанятый стул. По правилу умножения получаем, что всего имеется 6·5·4·3·2·1 = 720 различных способов размещения. Таким образом, в «игру с рассаживаниями» семья может играть 720 дней, т. е. почти 2 года.

Ответ: 720.

Пример 6. Десять разных писем раскладывают по одному в десять конвертов. Сколько существует способов такого раскладывания?

Решение. Предложенная ситуация отличается от предыдущей (пример 5). Действительно, там были люди и стулья, здесь – письма и конверты. Однако и здесь, и там требуется узнать, сколькими способами можно разместить п предметов на п местах.

Повторяя предыдущее решение, получаем, что всего имеется 10·9·8·7·6·5·4·3·2·1=3 628 800 способов раскладывания писем по конвертам. Более 3,5 миллионов!

Ответ: 3628800.

Как мы видим, условия задач – разные, а решения, да и полученные ответы, по сути дела, одинаковы. Удобно поэтому ввести и одинаковые обозначения для таких ответов.

Определение. Произведение первых подряд идущих п натуральных чисел обозначают п!

п! = 1·2·3·…·(п-2)·(п-1)·п

Знак п! читается как «эн факториал», что в дословном переводе с английского языка означает «состоящий из п множителей». Приведем несколько первых значений для п:

1! = 1

2! = 1·2 = 2

3! = 1·2·3 = 6

4! = 1·2·3·4 = 24

5! = 1·2·3·4·5 = 120

6! = 1·2·3·4·5·6 = 720 и т.д.

Рассмотрим еще несколько примеров:

Пример 7. Вычислить: а) 3!; б) 7!-5!; в) .

Решение. а) 3!=1∙2∙3=6.

б) т.к. 7!= 1∙2∙3∙4∙5∙6∙7 и 5!= 1∙2∙3∙4∙5, то 5! можно вынести за скобки, тогда получим 5!(6∙7-1)= 1∙2∙3∙4∙5∙41=4920.

в) .

Пример 8. Упростить выражение: .

Решение. =1∙2∙3∙…∙(п- 1)∙п∙(п+1), а =1∙2∙3∙…∙(п-1), после сокращения получим п∙(п+1).

Как же сформулировать общее утверждение, частными случаями которого являются решения примеров 3, 5 и 6? Вот один из возможных вариантов.

ТЕОРЕМА: п различным элементам можно присвоить номера от 1 до п ровно п! различными способами.

Каждый способ нумерации от 1 до п, о котором идет речь в теореме, часто называют перестановкой данного п-элементного множества. Действительно, можно считать, что каждая такая нумерация просто расставляет или переставляет все элементы множества в некотором порядке.

Перестановками из п элементов называют комбинации, которые отличаются друг от друга только порядком элементов.

Число перестановок множества из п элементов обозначают Рп. Значит, приведенную теорему можно записать в виде формулы:

Рп = п!

Кроме правила умножения в комбинаторике иногда используется еще правило сложения: Для того чтобы найти число всех возможных исходов независимого проведения одного из двух испытаний А или В, следует сложить число всех исходов испытания А и число всех исходов испытания В.

Пример 9.На столе в стаканчике стоит 5 карандашей и 3 ручки. Для того, чтобы написать записку (записать телефонный номер и т.п.), мы можем взять 1 из 5 карандашей или 1 из 3 ручек, то есть у нас имеется 5 возможностей выбора одного карандаша и 3 возможности выбора одной ручки. Так как мы выбираем только 1 предмет, карандаш или ручку, то число всех возможностей выбора равно: 5 + 3 = 8.

Правила умножения и сложения применимы для любого количества независимых испытаний.

Подведем итоги нашего знакомства с простейшими комбинаторными задачами. Мы получили основное правило – правило умножения, рассмотрели его геометрическую модель – дерево возможных вариантов, ввели новое понятие – факториал, сформулировали теорему о перестановках, в которой это понятие используется.

– Конец работы –

Эта тема принадлежит разделу:

Учебное пособие предназначено для студентов гуманитарных специальностей, изучающих математику по технологии индивидуализированного обучения

Учебное пособие предназначено для студентов гуманитарных специальностей изучающих математику по технологии индивидуализированного обучения Оно... Теоретический материал был отобран из учебников по математике для гуманитарных... Задачи для самостоятельного решения разбиты на два уровня сложности основной и повышенный Задачи основного уровня...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Правила умножения и сложения

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Конфуций
  Весь теоретический материал курса разбит на порции по темам и сопровождается задачами двух уровней сложности. Работа по усвоению нового учебного материала осуществляется следующим о

Сущность аксиоматического метода
  Математика строится на основе понятий. Понятия бывают определяемые и неопределяемые. Под определением понимают точную формулировку того или иного понятия. Оп

Предмет математики
  Предмет математики нельзя ни подменять формальными логическими схемами, ни низводить до уровня коллекции разрозненных фактов. Математика есть учение об общих формах, свойственных ре

Место и роль математики в современном мире, мировой культуре и истории, в том числе в гуманитарных науках
  Роль математики в общечеловеческой культуре огромна. Обращаясь к истории философии, следует отметить, что ученые, создававшие математику Нового времени, рассматривали математическую

Пересечение множеств
  Рассмотрим два множества: Х = {0, 1, 3, 5}, Y = {1, 2, 3, 4}. Числа 1 и 3 и только они принадлежат одновременно обоим множествам Х и Y. Составленное из них множество {1, 3}

Объединение множеств
  Вновь возьмём множества Х = {0, 1, 3, 5} и Y = {1, 2, 3, 4} и наряду с ними рассмотрим множество {0, 1, 2, 3, 4, 5}. Это множество содержит все элементы множества Х и все элементы м

Вычитание множеств
  Если заданы два множества, то можно не только найти их пересечение и объединение, но и вычесть из одного множества другое. Результат вычитания называют разностью и определяют следую

Дополнение
  В случаях, когда одно из множеств является подмножеством другого, А В называют дополнением множества В до множества А, и обозначают символом В'А

Формула Грассмана
  Теория множеств используется при решении задач следующего вида: В группе зверей 15 умных, 13 – красивых, и 8 мартышек. Сколько зверей в группе? Ре

Конъюнкцией двух высказываний называется новое высказывание, которое истинно тогда и только тогда, когда оба высказывания истинны.
Конъюнкция обозначается или А&B; читается: «А и В». Табли

Дизъюнкцией двух высказываний является новое высказывание, которое ложно тогда и только тогда, когда оба высказывания ложны.
Дизъюнкция обозначается и читается «А или В». Таблица истинности для

Формулы логики высказываний
  В логике высказываний – первом и основном разделе математической логики – элементарные высказывания рассматриваются как нерасчленяемые «атомы», а составные высказывания – как молеку

Никаких других формул в логике высказываний нет.
Определение такого вида называется индуктивным. В п.п. 1 и 2 определены элементарные формулы, в п.п. 3 и 4 даны правила образования новых формул из любых двух данных формул.

Простейшие комбинаторные задачи
  Знакомство с новыми понятиями начнем с двух простых задач. Пример 1. Сколько четных двузначных чисел можно составить из цифр 0, 1, 2, 4, 5, 9? Реш

Выбор нескольких элементов. Размещения. Сочетания
  В предыдущем параграфе все примеры и упражнения сводились к выбору одного элемента из данного множества и подсчету количества таких выборов. А если необходимо выбрать бо

Случайные события и их вероятности
  Всякое действие, явление, наблюдение с несколькими различными исходами, реализуемое при данном комплексе условий, будем называть испытанием. Например, многократное п

Принять предположение о равновероятности (равновозможности) всех этих исходов;
3) найти количество N(А) тех исходов опыта, в которых наступает событие А; 4) найти частное

Вероятность суммы двух совместных событий равна сумме вероятностей этих событий минус вероятность произведения этих событий.
Р(А+В)=Р(А)+Р(В)-Р(АВ) Пусть А и В – два случайных события одного и того же испытания. Тогда условной вероятностью события А или вероятностью с

Случайные величины
Случайная величина – переменная величина, конкретное значение которой зависит от случая. Например, температура воздуха в 12 ч дня 1 июля в г. Новосибирске; номер грани, выпадающий при бро

Характеристики и параметры статистической совокупности
  В результате непосредственных наблюдений, измерений или регистрации фактов получается множество данных, которые образуют статистическую совокупность и нуждаются в обработке, которая

Группировка информации в виде таблиц
  Знакомство с элементами статистики начнем с конкретного примера. В девятых классах «А» и «Б» измерили рост 50 учеников. Получились следующие результаты: 162, 168,

Графическое представление информации
  Итак, выборки удобно задавать с помощью таблиц. Но мы знаем, что и для функций есть табличный способ их задания. Таблицы образуют «мостик», по которому от выборок данных можн

Гистограммы распределения большого объема информации
  Гистограммы особенно незаменимы в случаях, когда ряд данных состоит из очень большого количества чисел (сотни, тысячи и т. п.). В этих случаях обработчику информации в первую очеред

Поделить найденную сумму на сумму всех кратностей.
В тех случаях, когда выборка задана распределением не кратностей, а распределением частот, удобно применять еще один способ подсчета среднего значения. Объясним его на том же примере.

Сложить все полученные произведения.
Таким образом, можем записать формулу для нахождения математического ожидания: , где хi

Экспериментальные данные и вероятности событий
  В конце темы рассмотрим связь между вероятностями случайных событий и экспериментальными статистическими данными. А сделаем это на примере бросания монеты. Будем последовательно, че

Два подхода к построению моделей
  Способов построения моделей существует великое множество, ибо, пытаясь разобраться в сложившемся положении вещей, можно совершенно по-разному упрощать его в надежде вскрыть суть явл

Три типа моделей
  Различают три типа моделей – физические, аналоговые и математические модели. Физические модели. Так называют увеличенное или уменьшенное описание объекта и

Основные этапы математического моделирования
  1 Построение модели. На этом этапе задается некоторый «нематематический» объект – явление природы, конструкция, экономический план, производственный процесс и т.д.

Задача о движении снаряда.
Рассмотрим следующую задачу механики. Снаряд пущен с Земли с начальной скоростью v0 = 30 м/c под углом α = 450 к ее поверхности; требуется найти траектори

Задача о баке с наименьшей площадью поверхности.
Требуется найти высоту h0 и радиус r0 жестяного бака объема V = 30 м3, имеющего форму закрытого кругового цилиндра, при которых площадь его пов

Транспортная задача.
В городе имеются два склада муки и два хлебозавода. Ежедневно с первого склада вывозят 50 т муки, а со второго – 70 т на заводы, причем на первый – 40 т, а на второй – 80 т. Обозначим чере

Задача о радиоактивном распаде.
Пусть N(0) – исходное количество атомов радиоактивного вещества, а N(t) – количество нераспавшихся атомов в момент времени t. Экспериментально установлено, что скорость изменен

Задача о коммивояжере.
Коммивояжеру, живущему в городе А1, надо посетить города А2, А3 и А4, причем каждый город точно один раз, и затем вернуться обратно

Построение модели.
Изобразим каждый город точкой на плоскости и пометим ее соответствующей меткой Ai (i = 1, 2, 3, 4). Соединим эти точки отрезками прямых: они будут изображать дороги между г

Задача о нахождении связи между структурой и свойствами веществ.
Рассмотрим несколько химических соединений, называемых нормальными алканами. Они состоят из п

Задача об определении надежности электрической цепи.
Здесь мы рассмотрим пример вероятностной модели (основные понятия теории вероятностей находятся в теоретическом разделе 5 темы). Предположим, что в электрическую цепь последовательно включ

Задача о диете.
Дама просто приятная решила похудеть и, как это нередко случается, обратилась за советом к подруге. Подруга – дама приятная во всех отношениях, посоветовала ей перейти на рациональное питание, сост

Людвиг Бьорне
Самой древней математической деятельностью являлся счет. Счет был необходим, чтобы следить за поголовьем скота и вести торговлю. Некоторые первобытные племена подсчитывали количество предметов, соп

Основной уровень
Задание 1. Принадлежат ли данному множеству объекты? 1.1 F – множество фруктов. Принадлежит ли этому множеству: а) яблоко; б) арбуз; в) груша; г) апельсин; д) морко

Повышенный уровень
  Задание 1. Определите, принадлежат ли объекты данному множеству: 1.1 М – множество предметов спортивного инвентаря. Принадлежит ли этому множеству:

Основной уровень
Задание 1.Укажите, какие из данных предложений являются высказываниями или высказывательными формами, не являются высказываниями или высказывательными формами: 1.1 а) Кург

Повышенный уровень
  Задание 1.Укажите, какие из данных предложений являются высказываниями или высказывательными формами, не являются высказываниями или высказывательными формами:

Основной уровень
Задание 1. Вычислите: а) , б)

Повышенный уровень
Задание 1. Вычислите: а) , б)

Основной уровень
  Задание 1. Охарактеризуйте событие, о котором идет речь, как достоверное, невозможное или случайное: 1.1 А = «день рождения моего друга – число, мен

Повышенный уровень
Задание 1. Охарактеризуйте событие, о котором идет речь, как достоверное, невозможное или случайное. 1.1 Вы открыли эту книгу на любой странице и прочитали первое попавшее

Основной уровень
  Задание 1. После группировки данных эксперимента получилась таблица их распределения, с помощью которой: а) определите объем выборки; б) найдите наиболее часто встр

Повышенный уровень
Задание 1. Выборка состоит из всех букв, входящих в двустишие. Для нее: а) выпишите ряд данных выборки; б) найдите объем выборки; в) определите кратность и частоту варианты «о»; г)

ВОПРОСЫ К ЭКЗАМЕНУ (зачету)
  1. Какие понятия называют основными неопределяемыми понятиями? 2. Что значит определить понятие? 3. Что такое аксиома, теорема? 4. Какие требования предъя

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги