Дисперсия света. Электронная теория дисперсии. Ход белого луча в призме. Вывод формулы для угла отклонения лучей призмой.

Дисперсия – явление зависимости показателя преломления от длинны волны. Впервые это явление наблюдал Ньютон. Потом была выведена полуимперическая формула (формула Каши):(для воздуха) , где -- выбирались экспериментально. Позже, когда был открыт электрон(1895г.) была открыта электронная теория дисперсии: под действием электромагнитной волны электрон совершает колебания.В результате электрон отклоняется от положения равновесия и образует дипольный момент:, r – отклонение от положения равновесия, N- число электронов (p=erzN) с другой стороны , где - диэлектрическая проницаемость поля, E – напряжённость поля

С одной стороны F – сила, возвращающая сила . При своём движении она испытывает некоторое сопротивление: , где- постоянная сопротивления среды.Третья сила : - частота колебаний электрона. Таким образом

Решение имеет следующий вид:под cos стоит частота вынуждающей силы.

N - концентрация

Показатель преломления зависит от частоты вынужденных и собственных колебаний.- очень мал.

 
 

 

 


- вынужденные колебания.На практике разрыва второго рода не может быть. Когда Пренебречь -нельзя Этот участок называется участком аномальной дисперсии. Он наблюдается внутри линии поглощения. Участок ab

 
 

 


называется участком нормальной дисперсии.- тоже участок нормальной дисперсии. На участке нормальной дисперсии показатель преломления с увеличением длинны волны падает.

Явление аномальной дисперсии широко применяется лазерной интерферометрии

 

 

Меряется концентрация неизвестных атомов. Метод аномальной дисперсии получил название метода кругов Рождественского.Крюки – искривление. Меряется концентрация по расстоянию между крюками.Исследуем формулу для разных частотных интервалов для нормальной дисперсии.

1).- радиомагнитные волны и низко частотный диапазон (переменные волны)- const Это волны дисперсии не испытывают, поэтому возможна радиосвязь.

2).(рентгеновские лучи и - лучи)

Рентгеновские и - лучи вообще не испытывают преломления. Вывод:явление дисперсии наблюдается только для диапазона, т.е. когда и сравнимы друг с другом.

Вывод формулы для угла отклонения лучей призмой.

Пусть луч AB падает на одну из граней призмы. Преломившись в точке B, луч пойдёт по направлению BC и, вторично преломившись в точке С, выйдет из призмы в воздух. Найдём угол , на который луч, пройдя через призму, отклонится от первоначального направления. Этот угол мы будем называть углом отклонения.Угол между преломляющими гранями, называемый преломляющим углом призмы,обозначим. Из четырехугольника BOCN, в котором углы при В и С прямые,найдём, что угол BNC равен .Пользуясь этим, из четырёхугольника BMCN находим(1).Отсюда (2).(рис9)

 
 

 


Угол , как внешний угол в треугольнике BCN, равен (3).где r – угол преломления в точке В, а - угол падения в точке С луча, выходящего из призмы.Далее, пользуясь законом преломления имеем (4).

С помощью полученных уравнений, зная преломляющий угол призмы и показатель преломления n, мы можем при любом угле падения i вычислить угол отклонения .Особенно простую форму получает выражение для угла отклонения в том случае, когда преломляющий угол призмы мал, т.е. призма тонкая, а угол падения i невелик; тогда угол тоже мал. Заменяя приближённо в формулах синуы углов самими углами, имеем i=nr, . Подставляя эти выражения в формулу (2) и пользуясь (3), находим (5).

Ход белого луча в призме.(рис10)

 

27. Излучение Вавилова – Черенкова.

 
 

 

 


Советский физик п. а. Черенков (1904 – 1990), работавший под руководством Вавилова, показал, что при движении релятивистских заряженных частиц в среде с постоянной скоростью v, превышающей фазовую скорость света в этой среде, т. е. при условии v>c/n (n – показатель преломления среды), возникает электромагнитное излучение, названное впоследствии излучением (эффектом) Вавилова – Черенкова. Природа данного излучения, обнаруженного для разнообразных веществ, в том числе и для чистых жидкостей, подробно изучалась С. И. Вавиловым. Он показал, что данное свечение не является люминесценцией, как считалось ранее, и высказал предположение, что оно связано с движением свободных электронов через вещество.

Излучение Вавилова – Черенкова в 1937 г. было теоретически объяснено советскими учеными И. Е. Таммом(1895-1971) и И.М. Франком(р. 1908) (Черенков, Тамм и Франк в 1958 г. удостоены Нобелевской премии).

Согласно электромагнитной теории, заряженная частица( например, электрон) излучает электромагнитные волны лишь при движении с ускорением. Тамм и Франк показали, что это утверждение справедливо только до тех пор, пока скорость заряженной частицы не превышает фазовой скорости c/n электромагнитных волн в среде, в которой частица движется. Если частица обладает скоростью v>c/n, то, даже двигаясь равномерно, она будет излучать электромагнитные волны. Таким образом, согласно теории Тамма и Франка, электрон, движущийся в прозрачной среде со скоростью, превышающей фазовую скорость света в данной среде, должен сам излучать свет.

Отличительной особенностью излучения Вавилова – Черенкова является его распространение не по всем направлениям, а лишь по направлению, составляющим острый угол J с траекторией частицы, т. е. вдоль образующих конуса, ось которого совпадает с направлением скорости частицы. Определим угол J

cosJ=(c/n)/v=c/(nv).

Возникновение излучения Вавилова – Черенкова и его направленность истолкованы Франком и Таммом на основе представлений об интерференции света с использованием принципа Гюйгенса.

На основе излучения Вавилова – Черенкова разработаны широко используемые экспериментальные методы для регистрации частиц высоких энергий и определения их свойств (направление движения, величина и знак заряда, энергия). Счетчики для регистрации заряженных частиц, в которых используется излучение Вавилова – Черенкова, получили название черенковских счетчиков. В этих счетчиках частица регистрируется практически мгновенно (при движении заряженной частицы в среде со скоростью, превышающей фазовую скорость света в данной среде, возникает световая вспышка, преобразуемая с помощью фотоэлектронного умножителя в импульс тока). Это позволило в1955 г. итальянскому физику Э. Сегре (р. 1905) открыть в черенковском счетчике короткоживущую античастицу – антипротон.