рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Связь сферической системы координат с

Связь сферической системы координат с - раздел Математика, КУРС ВЫСШЕЙ МАТЕМАТИКИ Декартовой Прямоугольной.   В Случае Сферическо...

декартовой прямоугольной.

 

В случае сферической системы координат соотношения имеют вид:

 

 

 

Линейное (векторное) пространство.

 

Как известно, линейные операции (сложение, вычитание, умножение на число) определены по-своему для каждого множества (числа, многочлены, направленные отрезки, матрицы). Сами операции различны, но их свойства одинаковы.

Эта общность свойств позволяет обобщить понятие линейных операций для любых множеств вне зависимости от того, что это за множества (числа, матрицы и т.д.).

Для того, чтобы дать определение линейного (векторного) пространства рассмотрим некоторое множество L действительных элементов, для которых определены операции сложения и умножения на число.

 

Эти операции обладают свойствами:

1) Коммутативность += +

2) Ассоциативность (+) + = + (+)

3)Существует такой нулевой вектор , что +=для "Î L

4) Для "Î L существует вектор = -, такой, что +=

5)1×=

6) a(b) = (ab)

7) Распределительный закон (a + b)= a+ b

8) a(+) = a+ a

 

Определение: Множество L, элементы которого обладают перечисленными выше свойствами, называется линейным (векторным) пространством, а его элементы называются векторами.

 

Важно не путать понятие вектора, приведенное выше с понятием вектора как направленного отрезка на плоскости или в пространстве. Направленные отрезки являются всего лишь частным случаем элементов линейного (векторного) пространства. Линейное (векторное) пространство – понятие более широкое. Примерами таких пространств могут служить множество действительных чисел, множество векторов на плоскости и в пространстве, матрицы и т.д.

Если операции сложения и умножения на число определены для действительных элементов, то линейное (векторное) пространство является вещественным пространством, если для комплексных элементов – комплексным пространством.

 

Свойства линейных пространств.

 

1) В каждом линейном пространстве существует только один нулевой элемент.

2) Для каждого элемента существует только один противоположный элемент.

3) Для каждого Î L верно 0×= 0

4) Для каждого a Î R и Î L верно a×=

5) Если a×= , то a = 0 или =

6) (-1) = -

Линейные преобразования.

Определение: Будем считать, что в линейном пространстве L задано некоторое линейное преобразование А, если любому элементу Î L по некоторому правилу ставится в соответствие элемент АÎ L.

Определение: Преобразование А называется линейным, если для любых векторов Î L и Î L и любого a верно:

A(+) = A+A

A(a) = aA

 

Определение: Линейное преобразование называется тождественным, если оно преобразует элемент линейного пространства сам в себя.

Е=

 

Пример. Является ли А линейным преобразованием. А=+; ¹ 0.

 

Запишем преобразование А для какого- либо элемента . А= +

Проверим, выполняется ли правило операции сложения для этого преобразования А(+) = ++; A() + A() = +++, что верно только при = 0, т.е. данное преобразование А нелинейное.

 

 

Определение: Если в пространстве L имеются векторы линейного преобразования , то другой вектор является линейной комбинацией векторов .

 

Определение: Если только при a = b = … = l = 0, то векторы называются линейно независимыми.

 

Определение: Если в линейном пространстве L есть n линейно независимых векторов, но любые n + 1 векторов линейно зависимы, то пространство L называется n-мерным, а совокупность линейно независимых векторов называется базисом линейного пространства L.

 

Следствие: Любой вектор линейного пространства может быть представлен в виде линейной комбинации векторов базиса.

 

 

Матрицы линейных преобразований.

 

Пусть в n- мерном линейном пространстве с базисом ,,…,задано линейное преобразование А. Тогда векторы А,…,А- также векторы этого пространства и их можно представить в виде линейной комбинации векторов базиса:

 

A= a11+ a21+…+ an1

A= a12+ a22+…+ an2

……………………………….

A= an1+ an2+…+ ann

Тогда матрица А = называется матрицей линейного преобразования А.

 

Если в пространстве L взять вектор = x1+ x2+…+ xn, то AÎ L.

, где

……………………………..

 

Эти равенства можно назвать линейным преобразованием в базисе ,,…,.

В матричном виде:

, А×,

 

Пример. Найти матрицу линейного преобразования, заданного в виде:

– Конец работы –

Эта тема принадлежит разделу:

КУРС ВЫСШЕЙ МАТЕМАТИКИ

mailto aalar yandex ru... К У Р С В Ы С Ш Е Й М А Т Е М А Т И К И...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Связь сферической системы координат с

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

К У Р С
В Ы С Ш Е Й М А Т Е М А Т И К И Краткий конспект лекций     ЧАСТЬ 1    

Определение. Матрицы, полученные в результате элементарного преобразования, называются эквивалентными.
Надо отметить, что равные матрицы и эвивалентные матрицы - понятия совершенно различные. Теорема.

Пусть заданы векторы в прямоугольной системе координат
тогда линейные операции над ними в координатах имеют вид:  

Пусть заданы точки М1(x1, y1, z1), M2(x2, y2, z2) и вектор .
Составим уравнение плоскости, проходящей через данные точки М1 и М2 и произвольную точку М(х, у, z) параллельно вектору

Кривая второго порядка может быть задана уравнением
Ах2 + 2Вху + Су2 + 2Dx + 2Ey + F = 0.  

Определение. Точка О называется полюсом, а луч l – полярной осью.
  Суть задания какой- либо системы координат на плоскости состоит в том, чтобы каждой точке плоскости поставить в соответствие пару действительных чисел, определяющих положение этой т

Уравнение прямой в пространстве по точке и
направляющему вектору.   Возьмем произвольную прямую и вектор

Уравнение прямой в пространстве, проходящей
через две точки.   Если на прямой в пространстве отметить две произвольные точки M1(x1, y1, z1) и M2(x2

Условия параллельности и перпендикулярности
плоскостей.   На основе полученной выше формулы для нахождения угла между плоскостями можно найти условия параллельности и перпендикулярности плоскостей. &nbs

Условия параллельности и перпендикулярности
прямых в пространстве.   Чтобы две прямые были параллельны необходимо и достаточно, чтобы направляющие векторы этих прямых были коллинеарны, т.е. их соответствующие ко

Условия параллельности и перпендикулярности
прямой и плоскости в пространстве.   Для того, чтобы прямая и плоскость были параллельны, необходимо и достаточно, чтобы вектор нормали к плоскости и направляющий вект

Собственные значения и собственные векторы
линейного преобразования.   Определение: Пусть L – заданное n- мерное линейное пространство. Ненулевой вектор

Приведение квадратичных форм к каноническому
виду.   Рассмотрим некоторое линейное преобразование А с матрицей

Определение. Если каждому натуральному числу n поставлено в соответствие число хn, то говорят, что задана последовательность
x1, х2, …, хn = {xn}   Общий элементпоследовательности является функцией от n. xn = f(n)

Бесконечно большие функции и их связь с
бесконечно малыми. Определение. Предел функции f(x) при х®а, где а- число, равен бесконечности, если для любого числа М>0 существует тако

Определение. Числа и называются комплексно – сопряженными.
  Определение. Два комплексных числа и

А Ì В
  Определение. Если А Í В, то множество А называется подмножествоммножества В, а если при этом А ¹ В, то множество А называется

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги