Значение формулы логики предикатов.

О логическом значении формулы логики предикатов можно говорить лишь тогда, когда задано множество M, на котором определены входящие в эту формулу предикаты. Логическое значение формулы логики предикатов зависит от значений трех видов переменных: 1) значений входящих в формулу переменных высказываний, 2) значений свободных предметных переменных из множества М, 3) значений предикатных переменных.

При конкретных значениях каждого из трех видов переменных формула логики предикатов становится высказыванием, имеющим истинное или ложное значение.

В качестве примера рассмотрим формулу , (1) в которой двухместный предикат Р(x, y) определен на множестве MхM, где M={0,1,2,…,n,…}, т.е. MхM=NхN.

В формулу (1) входит переменный предикат P(x,y), предметные переменные x,y,z, две из которых y и z – связанные кванторами, а x – свободная.

Возьмем за конкретное значение предиката P(x,y) фиксированный предикат P0(x,y): “x<y”, а свободной переменной х придадим значение . Тогда при значениях y, меньших x0=5, предикат P0(x0,y) принимает значение “ложь”, а импликация при всех принимает значение “истина”, т.е. высказывание имеет значение “истина”.

 

Формула А логики предикатов называется выполнимой в области М, если существуют значения переменных входящих в эту формулу и отнесенных к области М (иначе – существует модель), при которых формула А принимает истинные значения.

Формула А логики предикатов называется выполнимой, если существует область, на которой эта формула выполнима.

 

Формула А логики предикатов называется общезначимой, если она тождественна истинна на всякой области (на любой модели).

Если две равносильные формулы логики предикатов соединить знаком эквиваленции , то полученная формула будет принимать значение И для любого набора переменных в любой области, т.е. будет общезначимой.

Это понятие является обобщением понятия тождественной истинности формулы логики высказываний. Все логические законы, представленный в логике высказываний формулами (1 -30) являются общезначимыми формулами логики предикатов и выражают, как и другие общезначимые формулы, законы логики на языке логике предикатов.

Наиболее употребительные специфические законы логики предикатов, как было отмечено выше, представлены формулами (31 -54).

Общезначимость формулы логики предикатов, например, F обозначается ├F. Все общезначимые формулы могут быть источниками новых ├ формул. Например, подставляя в (14) – закон исключенного третьего – вместо х предикат Р(х1,…,хn), получаем общезначимую формулу Р(х1,…,хn) (х1,…,хn). При n=1 имеем общезначимую формулу , и, таким образом , - общезначимая формула логики предикатов.

Из тождественно истинной формулы логики высказываний (2) подстановкой вместо х предиката Р(х, y), а вместо y- предиката Q(x,y) получаем общезначимую формулу и т. д.

Чистая и прикладная логика предикатов: