рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Решение одной из задач.

Решение одной из задач. - раздел Математика, Обзор возможностей математических пакетов MathCAD 2000, MathLAB 5.0, Mathematica В Качестве Примера Возьмём Задачу Разложения Функции В Ряд Тейлора (Задача №1...

В качестве примера возьмём задачу разложения функции в ряд Тейлора (задача №1).

Поскольку ЭВМ способна непосредственно вычислять только функции, содержащие арифметические операции (полиномы, дробно-рациональные функции, полиномиальные сплайны и т.д.), то большое количество элементарных функций реализуется на вычислительной машине путём замены исходной функции её приближённым аналогом. Обычно используются полиномиальные функции: . Если полная погрешность вычисления на заданном интервале не превышает заданную величину, то приближение исходной функции считается удовлетворительным.

В нашем примере с помощью арифметических операций невозможно вычислить только функцию sin(x). Разложим sin(x) в ряд Тейлора. Из курса математического анализа известно, что в окрестностях точки разложения x0=0 функция sin(x) раскладывается в ряд Тейлора следующим образом:

,

где Rn(x) – остаточный член формулы Тейлора.

Замечание. При разложении более сложных функций в ряд Тейлора необходимо воспользоваться стандартной методикой. При этом точку разложения выбирать из соображений простоты вычисления коэффициентов формулы Тейлора и принадлежности точки разложения интервалу вычисления функции. Радиус сходимости разложения можно определить с помощью признака Даламбера, в отдельных случаях помогают признаки сходимости Коши и Лейбница.

В нашем примере остаточный член может быть оценён по формуле:

Определимся с интервалом разложения функции. Исходная функция является нечётной функцией, поскольку f(x) = -f(-x), кроме того, она терпит разрывы второго рода в точках, где sin(x) = 0. На рис. 2.11 представлен график функции:

Рис. 2.11

В точке x = 0 функция терпит устранимый разрыв первого рода, поскольку .

Будем считать, что вычисления производятся на центральном участке непрерывности функции (-π, π). Учитывая центральную симметрию функции, рассмотрим интервал (0, π). Рассмотрим, каким образом изменяется оценка остаточного члена формулы Тейлора при n = 5 (см. рис. 2.12).

Из графика видно, что при удалении x от точки разложения величина остаточного члена резко увеличивается. Установим связь между полной ошибкой приближённого представления вычисляемой функции и остаточным членом разложения sin(x) по формуле Тейлора. При замене sin(x) имеем:

.

Методическая ошибка в связи с заменой синуса полиномиальной функцией содержится в знаменателе вычисляемой функции, следовательно, по формуле оценки ошибки от деления получим:

,

учитывая, что имеем:

Если не учитывать погрешности округления, то для оценки числа членов ряда разложения функции sin(x), обеспечивающие заданную точность вычисления функции, можно воспользоваться неравенством:

(2.65)

В последней формуле учитывается, что в условии задачи задана величина относительной погрешности вычисления функции.

Экономизация ряда заключается в уменьшении числа арифметических операций при условии сохранения заданной точности вычисления функции. Данный приём использует свойство полиномов Чебышева сводить к минимуму максимальную ошибку приближения. Экономизация основывается на изменении структуры ряда в сторону увеличения сходимости, при этом в отдельных случаях удаётся уменьшить число членов ряда.

В нашем примере наибольшая погрешность возникает на правой границе интервала приближения функции, с другой стороны полинома Чебышева действуют на интервале (-1, 1), поэтому вычисления будем производить для x = 0,99.

– Конец работы –

Эта тема принадлежит разделу:

Обзор возможностей математических пакетов MathCAD 2000, MathLAB 5.0, Mathematica

Обзор пакета MathCAD... Введение в MathCAD...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Решение одной из задач.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Входной язык системы MathCAD.
Уникальное свойство MathCAD — возможность описания математических алгоритмов в естественной математической форме с применением общепринятой символики для математических знаков, таких, например, как

Формульный редактор.
Фактически система MathCAD интегрирует три редактора: формульный, текстовый и графический. Для запуска формульного редактора достаточно установить курсор мыши в любом свободном месте окна редактиро

Наборные панели и шаблоны.
Подготовка вычислительных блоков облегчается благодаря выводу шаблона при задании того или иного оператора. Для этого в MathCAD служат наборные панели с шаблонами различных математических символов

Возможности символьного процессора (Symbolic)
Системы компьютерной алгебры снабжаются специальным процессором для выполнения аналитических (символьных) вычислений. Его основой является ядро, хранящее всю совокупность формул и формульных преобр

Назначение системы SmartMath.
Система SmartMath более полно использует ядро символьных операций, чем символьные вычисления из подменю позицииSymbolics главного меню, и снимает некоторые ограничения на их выполн

Инструментальная панель
Инструментальная панель командного окна системы MATLAB позволяет обеспечить простой доступ к операциям над М-файлами (рис. 1.4)

Программирование в среде Matlab 5.
Файлы, которые содержат коды языка MATLAB, называются M-файлами. Для создания M-файла используется текстовый редактор; вызову М-файла предшествует присваивание значений входным аргументам; результа

Алгебра.
Одной из самых важных задач, рассматриваемых в алгебре, является нахождение корней многочленов. Пусть, например, требуется найти корни уравнения третьей степени

Анализ.
Наряду с алгебраическими преобразованиями "Математика'' позволяет выполнять операции математического анализа. Базовыми являются операции интегрирования Integrate и дифференцирования D. Проинте

Численные методы.
Значения элементарных функций и многочисленных специальных математических функций в вещественных и комплексных точках с вещественными координатами, можно найти, просто вычислив соответствующие выра

Формульный редактор.
Фактически система MathCAD интегрирует три редактора: формульный, текстовый и графический. Для запуска формульного редактора достаточно установить курсор мыши в любом свободном месте окна редактиро

Наборные панели и шаблоны.
Подготовка вычислительных блоков облегчается благодаря выводу шаблона при задании того или иного оператора. Для этого в MathCAD служат наборные панели с шаблонами различных математических символов.

Возможности символьного процессора (Symbolic)
Системы компьютерной алгебры снабжаются специальным процессором для выполнения аналитических (символьных) вычислений. Его основой является ядро, хранящее всю совокупность формул и формульных преобр

Общая формула для оценки главной части погрешности.
При численном решении математических и прикладных задач почти неизбежно появление на том или ином этапе их решения погрешностей следующих трех типов [1]. а) Погрешность задачи

Графы вычислительных процессов.
Рассмотрим более удобный способ подсчёта распространения ошибки в каком-либо арифметическом вычислении [6]. С этой целью мы будем, изображать последовательность операций в вычислении с пом

Деление
Если выполняется деление a1/a2, то стрелка от a1 к косой черте в кружке получает коэффициент +1, а стрелка от a2 к косой черте в кру

Методы решения алгебраических и трансцендентных уравнений.
  2.3.1. Приближённое решение уравнения f(x) = 0 методом деления пополам (методом бисекций). Пусть задана непрерывная функция f(x) и требуется найти корень у

Метод простых итераций.
Метод простых итераций (метод последовательных приближений) решения уравнения f(x) = 0 состоит в замене исходного уравнения эквивалентным ему уравнением x = j(x) и построении последовательности x

Порядок выполнения лабораторной работы с помощью метода простых итераций.
Графически или аналитически отделить корень уравнения f(x) = 0. 1. Преобразовать уравнение f(x) = 0 к виду x = j(x) так, чтобы в некоторой окрестности [a,b] корня x производная j¢(x)

Порядок выполнения лабораторной работы с помощью метода Ньютона
1. Графически или аналитически отделить корень уравнения f(x) = 0. Убедиться, что на найденном отрезке [a,b] функция f(x) удовлетворяет условиям сходимости метода Ньютона. 2. Выбрать начал

Метод Вегстейна.
При выводе метода Вегстейна решения задачи о неподвижной точке x=φ(x) будем использовать как аналитические, так и геометрические соображения [1]. Пусть уже найдены:

Алгоритм Вегстейна.
Шаг 0. Ввод x0 (начального приближения), φ(x) (исходной функции), q (оценки модуля производной), ε (допустимой абсолютной погрешности). Шаг 1. Вычислить

Метод Чебышева.
Требуется найти вещественный корень уравнения f(x) = 0, изолированный в интервале (a, b). Функция f(x) предполагается непрерывной вместе с производными до n-го порядка включительно, причём в интерв

Метод Данко.
Для отыскания действительного корня уравнения f(x)=0, изолированного в интервале (a, b), рассматривается кривая [5]

Метод простых итераций.
Рассмотрим произвольную нелинейную систему уравнений в Rn [10]. или в более к

Метод Ньютона.
Рассмотрим систему n нелинейных уравнений с n неизвестными или в векторной форме f

Метод наискорейшего спуска.
Общий недостаток всех рассмотренных выше методов решения систем нелинейных уравнений – это сугубо локальный характер сходимости, затрудняющий их применение в случаях, когда имеются проблемы с выбор

Аппроксимация с помощью кубического сплайна.
Специальным видом кусочной интерполяции является интерполяция с помощью сплайн-функции. Образованные в процессе такой интерполяции кривые обладают достаточным приближением и образуют кусочно-кубиче

Тригонометрическая интерполяция.
Пусть функция f(х) задана на отрезке [0,2p] таблицей значении f(xi) в равноотстоящих узлах (i=1, 2, ..., 2N

Метод градиентного спуска.
Общая задача нелинейного программирования без ограничений состоит в минимизации функции f(x)=f(x1, x2, ..., xп}, заданной во всем n-мерном евклидовом

Минимизация функции методом Нелдера-Мида.
В лабораторных предыдущих работах описаны градиентные методы отыскания локального минимума функции нескольких переменных. В настоящей работе рассматривается один из методов минимизации, в котором в

Порядок выполнения лабораторной работы.
1. Составить подпрограмму-функцию для вычисления значений целевой функции. 2. Составить программу-функцию для нахождения экстремума целевой функции методом Нелдера-Мида. 3. Провес

Метод Эйлера.
Пусть требуется найти приближенное решение дифференци­ального уравнения y'=f(x,у), удовлетворяющее начальному усло­вию у(х0)=у0. Численное решение задачи состоит

Метод Рунге-Кутта.
Пусть требуется найти решение дифференциального уравнения y¢=f(x, y), удовлетворяющее начальному условию y(x0) = y0. Численное решение задачи состоит в построени

Экономизация.
Экономизация ряда заключается в уменьшении числа арифметических операций при условии сохранения заданной точности вычисления функции. Данный приём использует свойство полиномов Чебышева сводить к м

К лабораторной работе №3. Методы решения алгебраических и трансцендентных уравнений.
Найти корень уравнения с точностью e = 0.0001. · Отделяем корень графически.

Моделирование сплайн-интерполяции.
Для исследования сплайн-интерполяции составим программу, вычисляющую сплайн-коэффициенты по граничному условию А. Функция Spline реализует алгоритм вычисления сплайн-коэффициентов с учётом

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги