рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Производная функции комплексного переменного. Условия Коши-Римана. Аналитичность функции

Производная функции комплексного переменного. Условия Коши-Римана. Аналитичность функции - Лекция, раздел Математика, Уравнения, в которых неизвестная функция входит под знак производной или диффе-ренциала, называется дифференциальным уравнением. Например   Пусть Функция Определена В Точке И Некоторой Ее Окрестности С...

 

Пусть функция определена в точке и некоторой ее окрестности Сместимся из точки в точку Тогда аргумент функции получит приращение , а сама функция -- приращение

Определение 1. Если существует конечный предел

 

 

то его называют производной функции в точке и обозначают

 

С понятием производной тесно связано понятие дифференцируемости функции в точке

функция называется дифференцируемой в точке если её приращение в этой точке представляется в виде

 

где постоянная, не зависящая от При этом величина называется дифференциалом функции в точке и обозначается Разделив обе части равенства (2) на будем иметь Последнее равенство означает, что существует предел (1), т.е. что существует производная и что она равна Q. Таким образом, дифференцируемость функции в точке эквивалентна существованию производной . При этом и значит,

 

 

Как уже отмечалось выше, не любая (даже очень простая) функция дифференцируема в точке Для этого её мнимая и действительные части должны быть определенным образом подчинены друг другу в следующем смысле.

 

Теорема Коши-Римана. Для того чтобы функция была дифференцируема в точке необходимо и достаточно, чтобы в точке её действительная и мнимая части были дифференцируемы (как функции действительных переменных) и чтобы в этой точке имели место равенства

 

(равенства (3) называются условиями Коши-Римана).

Доказательство. Пусть функция дифференцируема в точке {textit{ }} Тогда имеет место асимптотическое разложение (2). Запишем его более подробно:

 

где [4]. Отделяя здесь мнимые и действительные части, получим

 

Эти равенства означают, во-первых, что функции дифференцируемы как функции действительных переменных и в точке и, во-вторых, что имеют место равенства

 

в точке Таким образом, если функция дифференцируема в точке то имеют место условия Коши-Римана (3). Рассуждая обратным ходом, покажем, что при выполнении условий (3) функция будет дифференцируемой в точке Теорема доказана.

Замечание 1. Из доказательства теоремы следует, что если } дифференцируема в точке то ее производную в этой точке можно вычислять по формуле или по формуле .

Пример 1. Проверить, будет ли функция дифференцируемой. Если да, то найти её производную.

Решение. Выделим сначала в мнимую и действительные части:

 

Теперь проверим условия Коши-Римана. Имеем

 

значит, условия (3) Коши-Римана выполняются для всех Следовательно, функция дифференцируема в любой точке Её производную находим по формуле .

Таким образом, как и ожидалось, мы получили, что Забегая вперёд, отметим, что производные всех элементарных однозначных комплексных функций находятся по тем же правилам, что и производные действительных функций. Например,

 

То же замечание справедливо и для отдельных ветвей многозначных функций. Например,

 

Введём теперь следующее важное понятие.

Определение 2. Функция называется аналитической в точке если она дифференцируема как в точке так и в некоторой её окрестности.

Аналитичность функции в точке равносильна тому, что удовлетворяет условиям Коши-Римана (3) в некоторой окрестности точки (включая и саму точку

 

Определение 3.Функция называется аналитической (регулярной, голоморфной) в области }если она аналитична в любой точке этой области.

Заметим, что действительная и мнимая части аналитической функции удовлетворяют уравнению Лапласа: Это непосредственно вытекает из условий Коши-Римана. Функции, удовлетворяющие уравнению Лапласа, называются гармоническими.

Пример 2. Является ли функция аналитической хотя бы в одной точке?

Решение. Так как , то , . Условия Коши--Римана имеют вид: , и выполняются только в точке . Следовательно, функция дифференцируема только в точке и нигде не аналитична. По определению запишем: . Таким образом, производная существует и равна нулю.

Так как мнимая и действительная части аналитической функции связаны условиями Коши-Римана (3), то определяется (с точностью до постоянного слагаемого) либо своей действительной, либо мнимой частью. Покажем это на примере.

Пример 3. Найти аналитическую функцию, если известна ее мнимая часть дополнительном условии .

Решение. Так как , то из условий Коши-Римана (3) находим производные действительной части:

 

 

Решив первое из этих уравнений, находим где -- произвольная функция переменной . Для определения дифференцируем по и подставляем в (2): , откуда и . Следовательно, и окончательно получим:

 

т.е. действительная часть восстанавливается с точностью до постоянного слагаемого. Условие позволяет найти эту постоянную однозначно: . Таким образом, .

Имеют место следующие утверждения.

 

1. Степенная функция с натуральным показателем аналитична во всей комплексной плоскости причем

 

2. Каждая ветвь

- фиксировано) функции аналитична в области причем

3. Комплексная экспонента аналитична во всей плоскости причем

4. Комплексные тригонометрические функции и аналитичны во всей плоскости причем То же утверждение имеет место и для гиперболических функций, причем

5. Каждая ветвь логарифми-

ческой функции аналитична в области причем

 

 

Все эти утверждения проверяются с помощью соотношений Коши-Римана.

 

– Конец работы –

Эта тема принадлежит разделу:

Уравнения, в которых неизвестная функция входит под знак производной или диффе-ренциала, называется дифференциальным уравнением. Например

семестр часть Дифференциальные уравнения... В каждой лекции все формулы определения и теоремы нумеруются так же как и в... Лекция Общие понятия Начальная задача задача Коши и теорема существования и единственности решения задачи Коши...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Производная функции комплексного переменного. Условия Коши-Римана. Аналитичность функции

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Линейные дифференциальные уравнения. Метод вариации произвольной постоянной
Уравнение вида   где неизвестная функция, известные функции[2], называется линейным дифференциальным уравнением. Если то уравнение (1) называется однородным. Ес

Задача Коши. Теорема существования и единственности решения задачи Коши. Общее решение и общий интеграл
  Сначала дадим понятие решения уравнения (3). Определение 1.Решением уравнения (3) на отрезке называется такая функция которая удовлетворяет

Уравнения, допускающие понижение порядка
Ясно, что чем меньше порядок дифференциального уравнения, тем легче его решить. Посмотрим, какие уравнения допускают понижение порядка. Сначала рассмотрим простейшее уравнение

Линейная зависимость и линейная независимость системы функций. Вронскиан. Исследование линейной независимости с помощью вронскиана
  Пусть функции имеют смысл на отрезке Определение 1. Говорят, что система функцийлинейно зависима на отрезке , если существуют постоянные , не равные

Структура общего решения однородного дифференциального уравнения
  Рассмотрим однородное линейное дифференциальное уравнение   Докажем следующий важный результат. Теорема 5. Пусть функции являются

Структура общего решения неоднородного уравнения. Метод вариации произвольных постоянных Лагранжа
  Пусть дано неоднородное дифференциальное уравнение   Докажем следующее утверждение. Теорема 1(о структуре общего решения неоднородно

Метод вариации произвольных постоянных Лагранжа
  Согласно теореме 1 поиск общего решения неоднородного дифференциального уравнения (1) сводится к двум процедурам: 1) построение фундаментальной системы решений соответствую

Комплексные решения дифференциальных уравнений. Линейная независимость комплексных решений
  Напомним, что комплексными числами называют числа вида где и – действительные числа, --- мнимая единица ( ). При этом называется действительной частью, а – м

Построение общего решения однородного дифференциального уравнения в случае кратных корней характеристического уравнения
  Напомним сначала, что корень характеристического многочлена называется корнем кратности если   Полезно заметить, что если полином имеет различных корне

Алгоритм 1.
1) По уравнению (1) составляем характеристическое уравнение , заменив в (1) производные на степени ( ). 2) Найдем корни характеристического уравнения и установим их кратности. 3)

Построение общего решения неоднородного уравнения с постоянными коэффициентами. Метод подбора частного решения неоднородного уравнения
  Для неоднородного уравнения   с непрерывными на отрезке коэффициентами и неоднородностью был изложен метод вычисления частного решения называемый методом в

Извлечение корня й степени из комплексного числа. Множества в комплексной плоскости
  Равенство (1) называется формулой Муавра. Используя его, можно вывести формулу извлечения корня й степени из комплексного числа. Однако для этого надо ввести сначала понятие

Предел и непрерывность функции комплексной переменной
  Ниже везде, если не оговорено противное, все функции считаются однозначными. Кроме того, запись автоматически предполагает, что и – действительные величины. Ниже везде, есл

Геометрический смысл модуля и аргумента производной
  Пусть функция дифференцируема в точке и При отображении вектор исходящий из точки переходит в бесконечно малый вектор исходящий из точки а гладкая кривая переходит в гладкую кривую

Теорема Коши для односвязной области и многосвязной области. Интегральная формула Коши
  Напомним, что множество называется односвязным, если любой замкнутый контур, лежащий в можно стянуть в точку, не выходя из . Множество называется связным, если его гра

Первообразная функции комплексных переменных
  Функция называется первообразной функции в области в области если дифференцируема в и Теорема 1. Если однозначная функция дифферен

Степенные ряды. Ряды Тейлора и Лорана
  Функциональные ряды вида где (коэффициенты ряда) и (центр ряда) – постоянные, переменная, называются степенными рядами. Ясно, что если мы научимся вычислять область сходимост

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги