рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Задача Коши. Теорема существования и единственности решения задачи Коши. Общее решение и общий интеграл

Задача Коши. Теорема существования и единственности решения задачи Коши. Общее решение и общий интеграл - Лекция, раздел Математика, Уравнения, в которых неизвестная функция входит под знак производной или диффе-ренциала, называется дифференциальным уравнением. Например   Сначала Дадим Понятие Решения Уравнения (3). ...

 

Сначала дадим понятие решения уравнения (3).

Определение 1.Решением уравнения (3) на отрезке называется такая функция

которая удовлетворяет следующим условиям:

1) функция дифференцируема раз на указанном отрезке;

2) точка при всех

3) имеет место тождество

Например, функция является решением уравнения на всей оси так как имеет место тождество

Начальная задача (задача Коши) для уравнения (1) ставится следующим образом:

 

и формулируется так: для фиксированной начальной точки найти решение уравнения (3), график которого (интегральная кривая) проходит через точку Имеет место следующее утверждение.

Теорема Коши(существования и единственности решения начальной задачи для уравнения высшего порядка). Пусть в уравнении (3) функция и её частные производные непрерывны в области Тогда какова бы ни была начальная точка лежащая внутри области , существует число такое, что задача Коши (4) с указанной начальной точкой имеет на отрезке решение и это решение единственно на указанном отрезке.

Обращаем внимание на достаточный и локальный характер этой теоремы (см. предыдущую лекцию). Так же, как и в случае уравнения первого порядка, здесь вводятся понятия частного и общего решений (и их интегралов).

Определение 2.Частным решениемуравнения (3) называется решение какой-нибудь его задачи Коши (4). Общим решением уравнения (3) в области называется функция зависящая от произвольных постоянных удовлетворяю-

щая следующим условиям:

1) при любых допустимых значениях постоянных функция является решением уравнения (1) на некотором отрезке

2) какова бы ни была начальная точка существуют значения постоянных такие, что функция является решением задачи Коши (4) с этой начальной точкой.

И, наконец, частный интеграл уравнения (3) есть частное решение этого уравнения, записанное в неявной форме а общий интеграл суть общее уравнения (3), записанное в неявной форме

Для проверки того, что соотношение является общим интегралом уравнения (3) надо из системы уравнений

 

исключить произвольные постоянные . Если при этом будет получено дифференциальное уравнение (3) (или эквивалентное ему уравнение), то общий интеграл этого уравнения. Предлагаем в качестве упражнения проверить, что соотношение является общим интегралом уравнения

 

– Конец работы –

Эта тема принадлежит разделу:

Уравнения, в которых неизвестная функция входит под знак производной или диффе-ренциала, называется дифференциальным уравнением. Например

семестр часть Дифференциальные уравнения... В каждой лекции все формулы определения и теоремы нумеруются так же как и в... Лекция Общие понятия Начальная задача задача Коши и теорема существования и единственности решения задачи Коши...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Задача Коши. Теорема существования и единственности решения задачи Коши. Общее решение и общий интеграл

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Линейные дифференциальные уравнения. Метод вариации произвольной постоянной
Уравнение вида   где неизвестная функция, известные функции[2], называется линейным дифференциальным уравнением. Если то уравнение (1) называется однородным. Ес

Уравнения, допускающие понижение порядка
Ясно, что чем меньше порядок дифференциального уравнения, тем легче его решить. Посмотрим, какие уравнения допускают понижение порядка. Сначала рассмотрим простейшее уравнение

Линейная зависимость и линейная независимость системы функций. Вронскиан. Исследование линейной независимости с помощью вронскиана
  Пусть функции имеют смысл на отрезке Определение 1. Говорят, что система функцийлинейно зависима на отрезке , если существуют постоянные , не равные

Структура общего решения однородного дифференциального уравнения
  Рассмотрим однородное линейное дифференциальное уравнение   Докажем следующий важный результат. Теорема 5. Пусть функции являются

Структура общего решения неоднородного уравнения. Метод вариации произвольных постоянных Лагранжа
  Пусть дано неоднородное дифференциальное уравнение   Докажем следующее утверждение. Теорема 1(о структуре общего решения неоднородно

Метод вариации произвольных постоянных Лагранжа
  Согласно теореме 1 поиск общего решения неоднородного дифференциального уравнения (1) сводится к двум процедурам: 1) построение фундаментальной системы решений соответствую

Комплексные решения дифференциальных уравнений. Линейная независимость комплексных решений
  Напомним, что комплексными числами называют числа вида где и – действительные числа, --- мнимая единица ( ). При этом называется действительной частью, а – м

Построение общего решения однородного дифференциального уравнения в случае кратных корней характеристического уравнения
  Напомним сначала, что корень характеристического многочлена называется корнем кратности если   Полезно заметить, что если полином имеет различных корне

Алгоритм 1.
1) По уравнению (1) составляем характеристическое уравнение , заменив в (1) производные на степени ( ). 2) Найдем корни характеристического уравнения и установим их кратности. 3)

Построение общего решения неоднородного уравнения с постоянными коэффициентами. Метод подбора частного решения неоднородного уравнения
  Для неоднородного уравнения   с непрерывными на отрезке коэффициентами и неоднородностью был изложен метод вычисления частного решения называемый методом в

Извлечение корня й степени из комплексного числа. Множества в комплексной плоскости
  Равенство (1) называется формулой Муавра. Используя его, можно вывести формулу извлечения корня й степени из комплексного числа. Однако для этого надо ввести сначала понятие

Предел и непрерывность функции комплексной переменной
  Ниже везде, если не оговорено противное, все функции считаются однозначными. Кроме того, запись автоматически предполагает, что и – действительные величины. Ниже везде, есл

Производная функции комплексного переменного. Условия Коши-Римана. Аналитичность функции
  Пусть функция определена в точке и некоторой ее окрестности Сместимся из точки в точку Тогда аргумент функции получит приращение , а сама функция -- приращение Опре

Геометрический смысл модуля и аргумента производной
  Пусть функция дифференцируема в точке и При отображении вектор исходящий из точки переходит в бесконечно малый вектор исходящий из точки а гладкая кривая переходит в гладкую кривую

Теорема Коши для односвязной области и многосвязной области. Интегральная формула Коши
  Напомним, что множество называется односвязным, если любой замкнутый контур, лежащий в можно стянуть в точку, не выходя из . Множество называется связным, если его гра

Первообразная функции комплексных переменных
  Функция называется первообразной функции в области в области если дифференцируема в и Теорема 1. Если однозначная функция дифферен

Степенные ряды. Ряды Тейлора и Лорана
  Функциональные ряды вида где (коэффициенты ряда) и (центр ряда) – постоянные, переменная, называются степенными рядами. Ясно, что если мы научимся вычислять область сходимост

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги