рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Линейная зависимость и линейная независимость системы функций. Вронскиан. Исследование линейной независимости с помощью вронскиана

Линейная зависимость и линейная независимость системы функций. Вронскиан. Исследование линейной независимости с помощью вронскиана - Лекция, раздел Математика, Уравнения, в которых неизвестная функция входит под знак производной или диффе-ренциала, называется дифференциальным уравнением. Например   Пусть Функции Имеют Смысл На Отрезке Определ...

 

Пусть функции имеют смысл на отрезке

Определение 1. Говорят, что система функцийлинейно зависима на отрезке , если существуют постоянные , не равные нулю одновременно, такие, что имеет место тождество

 

Если же тождество (3), где – постоянные, выполняется тогда и только тогда, когда все числа равны нулю ( то система функций называется линейно независимой на отрезке

Аналогично определяется линейная зависимость и линейная независимость на промежутках причем не исключается и случай бесконечного промежутка. Заметим, что выражение называется линейной комбинацией функций а числа – коэффициентами линейной комбинации.

Пример 1. Доказать, что система функций

 

линейно независима на любом отрезке

Решение. Составим линейную комбинацию функций (4) и посмотрим, когда она тождественно обращается в нуль:

 

Слева стоит многочлен с коэффициентами Само тождество означает, что любое число из отрезка является корнем этого многочлена. Если хотя бы один из коэффициентов не равен нулю, то получилось бы, что указанный многочлен имеет бесчисленное число корней, что невозможно. Значит, все числа равны нулю, поэтому функции (4) линейно независимы на отрезке

Пример 2. Будут ли линейно зависимыми на промежутке функции

?

Решение. Линейная комбинация тождественно обращается в нуль на промежутке , если взять числа Так как они не равны нулю (достаточно было бы, чтобы хотя бы одно из них не равнялось нулю), то указанные функции линейно зависимы на промежутке Ответ: да.

 

Теорема 3. Если система функций линейно завиcима на отрезке то хотя бы одна из них является линейной комбинацией других (на этом отрезке). Обратно: если одна из функций является на отрезке линейной комбинацией других, то система линейно зависима на отрезке

Доказательство. Пусть функции линейно зависимы на отрезке Тогда найдутся числа не равные нулю одновременно, такие, что

 

Пусть, например, Тогда можно записать

 

т.е. функция является линейной комбинацией функций Обратно: если выполняется тождество

 

то Мы видим, что тождество (3) имеет место при числах не равных нулю одновременно. Следовательно, система функций линейно зависима. Теорема доказана.

Очевидны следующие утверждения.

Если система функций содержит функцию то она линейно зависима (на отрезке , на котором указанные функции имеют смысл).

Если какая-нибудь подсистема системы функций линейно зависима, то и вся система линейно зависима.

Если система функций линейно зависима на отрезке , то она линейно зависима и на любом отрезке лежащем внутри отрезка

Если система функций линейно независима на отрезке то она линейно независима и на любом отрезке , содержащем отрезок (если, конечно, функции определены на отрезке ).

Заметим, что свойство линейной зависимости функций нельзя продолжить на больший отрезок, а свойство линейной независимости – сузить на меньший отрезок.Дадим эффективный способ проверки линейной зависимости или линейной независимости системы функций с помощью определителя Вронского.

Определение 2. Определителем Вронского (или просто вронскианом) системы функций , принадлежащих пространству , называется определитель

 

первую строку которого образуют данные функции а последующие строки являются производными функций предыдущей строки. Матрицу этого определителя мы будем называть матрицей Вронского.

Теорема 4 (необходимое условие линейной зависимости функций). Если функции линейно зависимы на отрезке , то их вронскиан обращается тождественно в нуль на этом отрезке, т.е.

Доказательство. Поскольку функции линейно зависимы на отрезке то существуют числа не равные нулю одновременно, такие, что имеет место тождество

 

Дифференцируя это тождество раз, получаем еще тождество. Вместе с предыдущим тождеством они образуют однородную систему алгебраических уравнений:

 

которая (в силу линейной зависимости функций ) имеет при каждом ненулевое решение Но тогда определитель этой системы, являющийся определителем Вронского функций , обращается в нуль при каждом т.е. Теорема доказана.

Заметим, что обратное утверждение для произвольной системы функций не имеет место.

Пример 3. Показать, что функции

 

линейно независимы на отрезке но

Решение.Посмотрим, при каких постоянных и выполняется тождество При имеем Это тождество имеет место при и при произвольном На промежутке имеем откуда выводим, что Итак, тождество на всем промежутке имеет место лишь при Значит, функции и линейно независимы на отрезке С другой стороны,

 

 

 

т.е. определитель Вронского тождественно обращается в нуль на отрезке

Ситуация, описанная в этом примере, не реализуется, если и являются решениями однородного уравнения с непрерывными на отрезке коэффициентами. Это будет показано ниже. Теорему 4. применяют при установлении линейной независимости функций.

Следствие 1. Если вронскиан системы функций не равен нулю хотя бы в одной точке то указанные функции линейно независимы на отрезке

Действительно, если бы были линейно зависимы на отрезке , то тождественно обращался бы в нуль на этом отрезке, а значит, в частности, он был бы равен нулю в точке чего быть не может.

– Конец работы –

Эта тема принадлежит разделу:

Уравнения, в которых неизвестная функция входит под знак производной или диффе-ренциала, называется дифференциальным уравнением. Например

семестр часть Дифференциальные уравнения... В каждой лекции все формулы определения и теоремы нумеруются так же как и в... Лекция Общие понятия Начальная задача задача Коши и теорема существования и единственности решения задачи Коши...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Линейная зависимость и линейная независимость системы функций. Вронскиан. Исследование линейной независимости с помощью вронскиана

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Линейные дифференциальные уравнения. Метод вариации произвольной постоянной
Уравнение вида   где неизвестная функция, известные функции[2], называется линейным дифференциальным уравнением. Если то уравнение (1) называется однородным. Ес

Задача Коши. Теорема существования и единственности решения задачи Коши. Общее решение и общий интеграл
  Сначала дадим понятие решения уравнения (3). Определение 1.Решением уравнения (3) на отрезке называется такая функция которая удовлетворяет

Уравнения, допускающие понижение порядка
Ясно, что чем меньше порядок дифференциального уравнения, тем легче его решить. Посмотрим, какие уравнения допускают понижение порядка. Сначала рассмотрим простейшее уравнение

Структура общего решения однородного дифференциального уравнения
  Рассмотрим однородное линейное дифференциальное уравнение   Докажем следующий важный результат. Теорема 5. Пусть функции являются

Структура общего решения неоднородного уравнения. Метод вариации произвольных постоянных Лагранжа
  Пусть дано неоднородное дифференциальное уравнение   Докажем следующее утверждение. Теорема 1(о структуре общего решения неоднородно

Метод вариации произвольных постоянных Лагранжа
  Согласно теореме 1 поиск общего решения неоднородного дифференциального уравнения (1) сводится к двум процедурам: 1) построение фундаментальной системы решений соответствую

Комплексные решения дифференциальных уравнений. Линейная независимость комплексных решений
  Напомним, что комплексными числами называют числа вида где и – действительные числа, --- мнимая единица ( ). При этом называется действительной частью, а – м

Построение общего решения однородного дифференциального уравнения в случае кратных корней характеристического уравнения
  Напомним сначала, что корень характеристического многочлена называется корнем кратности если   Полезно заметить, что если полином имеет различных корне

Алгоритм 1.
1) По уравнению (1) составляем характеристическое уравнение , заменив в (1) производные на степени ( ). 2) Найдем корни характеристического уравнения и установим их кратности. 3)

Построение общего решения неоднородного уравнения с постоянными коэффициентами. Метод подбора частного решения неоднородного уравнения
  Для неоднородного уравнения   с непрерывными на отрезке коэффициентами и неоднородностью был изложен метод вычисления частного решения называемый методом в

Извлечение корня й степени из комплексного числа. Множества в комплексной плоскости
  Равенство (1) называется формулой Муавра. Используя его, можно вывести формулу извлечения корня й степени из комплексного числа. Однако для этого надо ввести сначала понятие

Предел и непрерывность функции комплексной переменной
  Ниже везде, если не оговорено противное, все функции считаются однозначными. Кроме того, запись автоматически предполагает, что и – действительные величины. Ниже везде, есл

Производная функции комплексного переменного. Условия Коши-Римана. Аналитичность функции
  Пусть функция определена в точке и некоторой ее окрестности Сместимся из точки в точку Тогда аргумент функции получит приращение , а сама функция -- приращение Опре

Геометрический смысл модуля и аргумента производной
  Пусть функция дифференцируема в точке и При отображении вектор исходящий из точки переходит в бесконечно малый вектор исходящий из точки а гладкая кривая переходит в гладкую кривую

Теорема Коши для односвязной области и многосвязной области. Интегральная формула Коши
  Напомним, что множество называется односвязным, если любой замкнутый контур, лежащий в можно стянуть в точку, не выходя из . Множество называется связным, если его гра

Первообразная функции комплексных переменных
  Функция называется первообразной функции в области в области если дифференцируема в и Теорема 1. Если однозначная функция дифферен

Степенные ряды. Ряды Тейлора и Лорана
  Функциональные ряды вида где (коэффициенты ряда) и (центр ряда) – постоянные, переменная, называются степенными рядами. Ясно, что если мы научимся вычислять область сходимост

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги