рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Краткие теоретические сведения.

Краткие теоретические сведения. - раздел Математика, ЛИНЕЙНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Тема 1. Определители. Квадратной...

Тема 1. Определители.

Квадратной матрицей порядканазывается квадратная таблица из чисел (, ): , состоящая из строк и столбцов. У квадратной матрицы различают главную диагональ: и побочную диагональ: . Любой квадратной матрице порядка можно поставить в соответствие число , равное алгебраической сумме слагаемых, составленных определённым образом из элементов матрицы ,называемое определителем матрицы. Кратко обозначается , .

Определителем 1-ого порядка называется число .

Определителем 2-ого порядка называется число

.

Определителем 3-его порядка называется число

.

Минором элемента называется определитель, полученный из определителя вычёркиванием -ой строки и -ого столбца.

Алгебраическим дополнением элемента называется его минор , взятый со знаком :

.

Определителем порядка называется число

Разложением определителя по -ой строке () называется соотношение: .

Разложением определителяпо-ому столбцу () называется соотношение:

Определители обладают следующими свойствами:

1) определитель не изменится при замене всех его строк столбцами с теми же номерами;

2) определитель изменит знак на противоположный, если переставить местами любые две строки (два столбца) определителя;

3) общий множитель элементов какой-либо строки (столбца) можно вынести за знак определителя;

4) определитель равен нулю, если он содержит нулевую строку (столбец), две одинаковые или пропорциональные строки (столбца);

5) определитель не изменится, если к какой-либо строке (столбцу) прибавить другую строку (столбец), умноженную на любое число;

6) определитель треугольного вида (когда все элементы, лежащие по одну сторону одной из его диагоналей равны нулю) равен произведению диагональных элементов: .

Тема 2. Матрицы.

Матрицей размера называется прямоугольная таблица из чисел (, ): , состоящая из строк и столбцов. Если необходимо указать размеры матрицы, то пишут .

Если , то матрица называется квадратной.

Нулевой называется матрица , все элементы которой равны нулю, например: . Единичной называется квадратная матрица , на главной диагонали которой стоят единицы, а все остальные элементы равны нулю, например: . Треугольной называется квадратная матрица , все элементы которой расположенные по одну сторону от главной диагонали равны нулю, например: . Трапециевидной (ступенчатой) называется матрица , все элементы которой, расположенные ниже элементов равны нулю, например: .

Матрицы и называются равными и пишут , если они одинакового размера и их соответствующие элементы равны: ,,.

Матрицы можно транспонировать, складывать, вычитать, умножать на число, умножать на другую матрицу.

Транспонированной к матрице называется матрица , столбцами которой являются соответствующие строки матрицы .

Суммой (разностью) матриц и одного размера , называется матрица того же размера, для которой:

, ,.

Произведением матрицы размера на число называется матрица того же размера, для которой: , , .

Линейной комбинацией матриц иодного размера , называется матрица того же размера (и - произвольные числа), для которой: , ,,

Произведением матрицы на матрицу называется матрица , каждый элемент которой вычисляется по правилу:

, , .

Операция умножения матрицы на матрицу определена не для всех матриц, а только для таких у которых число столбцов левой матрицы равно числу строк правой матрицы . Такие матрицы называются согласованнымидля умножения. Поэтому прежде чем выполнять операцию умножения матрицы на матрицу следует проверить их согласованность для умножения и определить размерность матрицы-произведения (если умножение матриц возможно): . Особенность операции умножения матриц состоит в том, что в общем случае: , т.е. переместительное свойство места не имеет.

Элементарными преобразованиями матрицы называются:

1) перестановка строк (столбцов);

2) умножение строки (столбца) на число, отличное от нуля;

3) прибавление к элементам строки (столбца) соответствующих элементов другой строки (столбца), умноженных на любое число;

4) вычёркивание нулевой строки (столбца).

Матрицы и , полученные одна из другой в результате элементарных преобразований называются эквивалентнымии пишут .

Обратнойк квадратной матрице порядка , называется матрица того же порядка, если: , где - единичная матрица порядка .

Квадратная матрица называется невырожденной, если её определитель . Обратная матрица всегда существует для невырожденных матриц.

Основными методами вычисления обратной матрицы являются:

Метод присоединённой матрицы. Если-невырожденная матрица, то , где - присоединённая матрица, для которой: . Здесь - алгебраические дополнения элементов матрицы .

В частности, если , то

Метод элементарных преобразований. Для данной квадратной матрицыпорядка строится прямоугольная матрица размера приписыванием к справа единичной матрицы. Далее, с помощью элементарных преобразований над строками, матрица приводится к виду, что всегда возможно, если - невырожденная.

Матричными называются уравнения вида: , , ,

где матрицы- известны, матрица - неизвестна. Если квадратные матрицы и - невырожденные, то решения матричных уравнений записываются, соответственно, в виде: , , .

Минором -ого порядка матрицы размера называется определитель квадратной матрицы порядка , образованной элементами матрицы , стоящими на пересечении произвольно выбранных её строк и столбцов . Максимальный порядок отличных от нуля миноров матрицы , называется её рангом и обозначается или , а любой минор порядка , отличный от нуля – базисным минором.

Тема 3. Системы линейных уравнений.

…Система уравнений вида: называется системой линейных уравнений с неизвестными. Числа называются коэффициентами системы, - свободными членами системы, - неизвестными системы.

В матричной форме система имеет вид: , где ,,.Здесь -матрица системы, -матрица-столбец неизвестных,-матрица-столбец свободных членов.

Если , то система называется однородной, в противном случае неоднородной.

Система, матрица которой является треугольной с диагональными элементами , называется треугольной. Система, матрица которой является трапециевидной, называется трапециевидной.

Решением системы называется всякий упорядоченный набор чисел , обращающий каждое уравнение системы в равенство. Совокупность всех решений называется множеством решений системы.

Система называется совместной, если она имеет, по крайней мере, одно решение; определённой, если она имеет только одно решение; неопределённой, если она имеет бесконечно много решений; несовместной, если она не имеет решений.

Однородная система уравнений всегда совместна, так как всегда имеет, по крайней мере, нулевое решение . Треугольная система является определённой, трапециевидная система – неопределённой.

Две системы называются эквивалентными, если множества их решений совпадают.

Элементарными преобразованиями систем уравнений называются:

1) перестановка уравнений;

2) перестановка местами слагаемых в каждом из уравнений системы;

3) умножение уравнения на число, отличное от нуля;

4)прибавление к уравнению другого, умноженного на любое число;

5) вычёркивание уравнения вида: .

Основными точными методами решения систем линейных уравнений являются методы: Крамера, обратной матрицы и Гаусса.

Если число уравнений в системе совпадает с числом неизвестных и определитель матрицы системы , то система имеет единственное решение, которое можно найти:

а) методом Крамера по формулам: , , где - определитель, получаемый из определителя матрицы системы заменой -ого столбца на столбец свободных членов;

б) методом обратной матрицы по формуле .

Методом Гаусса находят решение произвольной системы линейных уравнений. Метод состоит в приведении системы уравнений, с помощью элементарных преобразований, к системе специального вида, эквивалентной исходной, решение которой очевидно. Преобразования по методу Гаусса выполняют в два этапа. Первый этап называют прямым ходом, второй - обратным.

В результате прямого хода выясняют: совместна или нет система и если совместна то, сколько имеет решений - одно или бесконечно много, а также, в случае бесконечного множества решений, указывают базисные и свободные неизвестные для записи общего решения системы. Преобразования прямого хода выполняют, как правило, над расширенной матрицей системы , которую получают, приписывая справа к матрице системы столбец свободных членов . В результате элементарных преобразований строк и перестановкой столбцов, матрица системы должна быть приведена к матрице треугольного или трапециевидного вида с элементами . При этом, система уравнений, матрица которой , является треугольной с диагональными элементами , будет иметь единственное решение; система уравнений, матрица которой , является трапециевидной с элементами , будет иметь бесконечно много решений. Если, при выполнении преобразований расширенной матрицы , в преобразованной матрице появится строка , где , то это говорит о несовместности исходной системы уравнений. Базисные неизвестные указывают, выписывая базисный минор преобразованной матрицы системы . Базисными являются неизвестные преобразованной системы, столбцы коэффициентов при которых образуют базисный минор (определитель максимального порядка, отличный от нуля). Свободными являются неизвестные, не являющиеся базисными.

В результатеобратного хода находят решение системы, записывая его в виде общего решения, если их бесконечно много. Преобразования обратного хода часто выполняют, над уравнениями системы, соответствующей последней расширенной матрице прямого хода. В случае единственного решения, его получают, находя последовательно значения всех неизвестных из уравнений системы, начиная с последнего. В случае, когда решений бесконечно много, их записывают в виде общего решения. Для этого свободным неизвестным придают разные произвольные постоянные значения: , ,…, , и последовательно из уравнений системы, начиная с последнего, находят значения всех базисных неизвестных. Полученное решение называют общим. Придавая произвольным постоянным, конкретные значения, находят частные решения системы уравнений.

Тема 4. Системы векторов. N-мерное векторное пространство. Евклидово пространство.

Арифметическим вектором называют упорядоченную совокупность из чисел: и обозначают . Числа называют компонентами вектора , число компонент называют его размерностью.

Векторы и называют равными, если они одинаковой размерности и их соответствующие компоненты равны: ,.

Суммой векторов и одной размерности, называют вектор той же размерности, для которого: , .

Произведением вектора на число называют вектор той же размерности, для которого: , .

Линейной комбинациейвекторов и одной размерности, называют вектор той же размерности (и - произвольные числа), для которого: , .

Множество всех -мерных векторов, в котором введены операции сложения и умножения на число, удовлетворяющие определённым требованиям (аксиомам) называют векторнымпространствоми обозначают .

Систему векторов называют линейно зависимой, если найдутся числа , одновременно, такие, что (где - нулевой вектор), в противном случае, систему называют линейно независимой.

Базисом системы векторов называют упорядоченную систему векторов , удовлетворяющую условиям:

1) , ; 2) система линейно независима; 3) для любого вектора найдутся числа такие, что . Коэффициенты , однозначно определяемые вектором , называют координатами вектора в базисе , а формулу называют разложениемвектора по базису и пишут: .

В пространстве базисом является каждая упорядоченная система из линейно независимых векторов: . Формулу называют разложениемвектора по базису , коэффициенты - координатами вектора в базисеи пишут .

Всякая упорядоченная система из векторов образует базис , если определитель, столбцами которого являются компоненты векторов , не равен нулю.

Пространство , в котором введено скалярное произведение векторов, удовлетворяющее определённым требованиям (аксиомам), называют евклидовым. Скалярным произведением двух векторов и называют число: .

Тема 5. Линейные операторы. Собственные числа и векторы.

Операторомназывается закон (правило), по которому каждому вектору ставится в соответствие единственный вектор , и пишут или В дальнейшем, рассматривается случай (преобразование пространства). Оператор называется линейным, если для любых векторов и действительных чисел выполнено условие: .

Если - базис пространства , томатрицей линейного оператора в базисе называется квадратная матрица порядка , столбцами которой являются столбцы координат векторов . Между линейными операторами, действующими в и квадратными матрицами порядка , существует взаимно однозначное соответствие, что позволяет оператор представить в матричном виде , где - матрицы-столбцы координат векторов , - матрица оператора в базисе .

Для линейных операторов, действующих в вводятся следующие операции: 1) сложение операторов:; 2) умножение операторов на число:; 3) умножение операторов: .

Обратным к оператору называется оператор такой, что , где - единичный (тождественный)оператор, реализующий отображение . Обратный оператор существует только для невырожденных операторов (операторов, матрица которых является невырожденной). Все, рассмотренные выше, действия над линейными операторами выполняют, выполняя аналогичные действия над их матрицами.

Пусть число и вектор , , таковы, что выполняются равенства: или . Тогда число называется собственным числом линейного оператора (или матрицы ), а вектор - собственным вектором этого оператора (или матрицы), соответствующим собственному числу . Равенство может быть записано в виде , где - единичная матрица порядка , - матрица-столбец координат собственного вектора , соответствующего собственному числу , - нулевая матрица-столбец.

Характеристическим уравнением оператора (или матрицы ) называется уравнение: .

Множество собственных чисел оператора (или матрицы) совпадает с множеством корней его характеристического уравнения: , а множество собственных векторов, отвечающих собственному числу , совпадает с множеством ненулевых решений матричного уравнения: .

Тема 6. Квадратичные формы.

Квадратичной формой ( или кратко ) от -переменных называется однородный многочлен второй степени с действительными коэффициентами: , где . Квадратичную форму всегда можно записать в матричном виде: , где - матрица квадратичной формы (являющаяся симметрической, так как выполняется условие ), - матрица-столбец, - матрица-строка, составленные из переменных .

Квадратичная форма называется невырожденной, если её матрица является невырожденной.

Квадратичная форма называется канонической, если она имеет вид:

.

Всякую квадратичную форму всегда можно привести к каноническому виду, например, методами Лагранжа и ортогональных преобразований.

Квадратичные формы подразделяют на различные типы в зависимости от множества их значений. Квадратичная форма называется:

положительно (отрицательно) определённой, если для любого выполняется неравенство (); неотрицательно (неположительно) определённой, если для любого выполняется неравенство (), причём существует , для которого ; знакопеременной (или неопределённой), если существуют такие и , что и .

Невырожденная квадратичная форма может быть либо положительно определённой, либо отрицательно определённой, либо знакопеременной. Тип невырожденной квадратичной формы можно определить, проверяя знаки главных миноров матрицы квадратичной формы.

Пусть , где - матрица квадратичной формы. Главными минорами матрицы называются миноры порядка

(), составленные из первых строк и первых столбцов матрицы: , , , .

Критерием знакоопределённости невырожденной квадратичной формы является критерий Сильвестра:

- квадратичная форма положительно определена тогда и только тогда, когда все главные миноры её матрицы положительны, т.е. , , , ;

- квадратичная форма отрицательно определена тогда и только тогда, когда для всех главных миноров её матрицы выполняются неравенства: , , , , (все миноры нечётного порядка отрицательны, а чётного – положительны) ;

- квадратичная форма знакопеременна тогда и только тогда, когда для главных миноров её матрицы выполняется хотя бы одно из условий: один из главных миноров равен нулю, один из главных миноров чётного порядка отрицателен, два главных минора нечётного порядка имеют разные знаки .

Тема 7. Векторная алгебра.

Вектором (геометрическим) называется направленный отрезок, задаваемый упорядоченной парой точек (началом и концом вектора). Обозначают вектор или . Расстояние между началом и концом вектора называется его длиной и обозначается или . Углом между векторами и называется угол , , на который следует повернуть один из векторов, чтобы его направление совпало с направлением другого вектора, при условии, что их начала совпадают. Проекцией вектора на вектор называется число .

Векторы называются коллинеарными, если они расположены на одной прямой или на параллельных прямых. Векторы называются компланарными, если они расположены в одной плоскости или в параллельных плоскостях.

Векторы и называются равными и пишут , если они коллинеарны, одинаково направлены и имеют равные длины. Векторы и называются противоположными и пишут , если они коллинеарны, направлены в разные стороны и имеют равные длины.

Суммой векторов и называется вектор , соединяющий начало вектора и конец вектора , при условии, что конец вектора совпадает с началом вектора (правило треугольника). Произведением вектора на действительное число называется вектор :

1) коллинеарный вектору ; 2) имеющий длину ; 3) направленный одинаково с вектором , если , и противоположно, если .

Ортом вектора , называется вектор , имеющий единичную длину и направление вектора : .

Базисом в пространстве называется упорядоченная тройка некомпланарных векторов, базисом на плоскости – упорядоченная пара неколлинеарных векторов, базисом на прямой – любой ненулевой вектор на этой прямой. Базис, в котором все векторы попарно перпендикулярны и имеют единичную длину, называется ортонормированным. Векторы ортонормированного базиса обозначаются: и , и называются базисными ортами. Различают правый и левый ортонормированные базисы. Базис -называется правым, если кратчайший поворот от к совершается против хода часовой стрелки, в противном случае он – левый. Базис -называется правым, если из конца вектора кратчайший поворот от вектора к

– Конец работы –

Эта тема принадлежит разделу:

ЛИНЕЙНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

учреждение высшего профессионального образования... Набережночелнинский институт...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Краткие теоретические сведения.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Г. Набережные Челны
1.Цель и задачи дисциплины, её место в учебном процессе. Цельпреподавания дисциплины -формирование системы базовых знаний по данной дисциплине, котор

Тема 3. Системы линейных уравнений.
Системы линейных уравнений (СЛУ). Основные понятия и определения. Матричная запись СЛУ. Теорема Кронеккера-Капелли. Формулы Крамера. Решение СЛУ методом обратной матрицы. Решение СЛУ методом Гаусса

Тема 4. Системы векторов. N-мерное векторное пространство. Евклидово пространство.
N – мерный арифметический вектор. Линейные операции над векторами, их свойства. Понятие n-мерного векторного пространства

Тема 7. Векторная алгебра.
Геометрические векторы на прямой, плоскости и в пространстве, действия над ними. Проекция вектора. Прямоугольная декартова система координат. Радиус-вектор. Координаты вектора. Линейные операции на

Тема 8. Прямые линии и плоскости.
Прямая на плоскости и в пространстве. Различные виды уравнений прямой на плоскости ив пространстве. Расстояние от точки до прямой на плоскости. Угол между двумя прямыми. Условия параллельности и пе

Методические указания по изучению дисциплины.
В процессе изучения данной дисциплины студенты должны сначала изучить теоретический материал и выработать навыки решения типовых задач, используя рекомендованную литературу, а затем выполнить одну

Решение.
А) Метод Крамера. 1а)Вычисляем определитель системы и проверяем, что он отличен от нуля:

Решение.
1а)Записываем расширенную матрицу системы: . 2а)

Решение.
1б)Записываем расширенную матрицу системы: . 2б)

Решение.
1в)Записываем расширенную матрицу системы: . 2в)

Решение.
1а)Записываем матрицу квадратичной формы: . 2а) Проверя

Решение.
1a).Находимвектор

Решение.
а)Длинырёбер и

Решение.
1а)Для построения области решений строим в системе координат соответствующие зад

С О Д Е Р Ж А Н И Е
1.Цели и задачи дисциплины, её место в учебном процессе………...2 2.Содержание и структура дисциплины……………….………….......3

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги