рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Нормы векторов и матриц

Нормы векторов и матриц - раздел Математика, Вычислительные методы линейной алгебры Приведем Определения Норм Векторов И Матриц [1]. Пусть Задан Вектор ...

Приведем определения норм векторов и матриц [1]. Пусть задан вектор x= (x1, x2, …, xn)T. Наиболее часто для векторов используются следующие нормы:

 

(3.1)

(3.2)

(3.3)

 

Норма (3.3) порождена скалярным произведением векторов

 

.

 

Для скалярного произведения справедливы следующие соотношения:

 

.

 

Если A симметричная матрица, то (Ax, y) = (x, Ay).

Определение 3.1. Нормой матрицы A называется число

 

. (3.4)

 

Согласованные с нормами векторов (3.1) — (3.3) нормы матриц определяются формулами

 

(3.5)

(3.6)

(3.7)

 

Здесь — собственные значения матрицы ATA, которая является симметричной. Чтобы обосновать формулу (3.7) рассмотрим определение нормы матрицы (3.4):

 

 

Можно доказать [1], что для симметричной матрицы B верно соотношение

, (3.8)

 

где λi — собственные значения матрицы B. Отсюда следует формула (3.7).

Пример 3.1. Вычислить нормы ||x||1, ||x||2, ||x||3 вектора x= (1, 2, – 3)T.

Решение. Пользуясь определениями норм (3.1) — (3.3), вычислим

 

Пример 3.2. Вычислить нормы ||A||1, ||A||2, ||A||3 матрицы

 

 

Решение. По формулам (3.5), (3.6) находим нормы матриц

 

 

Чтобы вычислить норму матрицы по формуле (3.7) необходимо найти собственные значения матрицы, полученной умножением транспонированной матрицы AT на данную матрицу A:

 

.

 

Не вдаваясь пока в подробности методов вычисления собственных значений матриц, вычислим в программе Mathcad собственные значения матрицы с помощью функции eigenvals:

 

 

 

Теперь мы можем вычислить норму матрицы по формуле (3.7):

 

 

Определение 3.2. Две нормы ||x||α и ||x||β называются эквивалентными, если существуют постоянные γ1 и γ2 такие, что при всех x ≠ 0 справедливы соотношения

||x||α/||x||β ≤ γ1, ||x||β /||x||α ≤ γ2.

 

Нормы ||x||1, ||x||2, ||x||3 эквивалентны между собой, так как выполняются неравенства [1]

||x||1 ≤ ||x||3 ≤ ||x||2n||x||1.

 

Из эквивалентности норм ||x||1, ||x||2, ||x||3 следует, что, если последовательность векторов сходится по одной из этих норм, то она сходится и по остальным нормам.

Ниже мы будем подразумевать под нормой ||x|| одну из указанных норм, а при необходимости конкретизировать, какую именно. При этом будем под нормой матрицы подразумевать норму, согласованную с нормой вектора.

– Конец работы –

Эта тема принадлежит разделу:

Вычислительные методы линейной алгебры

Вычислительные методы линейной алгебры изучают численные методы решения следующих задач... Решить систему линейных алгебраических уравнений СЛАУ... Вычислить определитель квадратной матрицы A...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Нормы векторов и матриц

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Решение систем линейных алгебраических уравнений
Теоретические условия существования и единственности решения систем линейных уравнений известны — главный определитель не должен быть равен нулю. Тогда решение можно найти по правилу Крамера

Метод Гаусса для решения систем линейных уравнений
Пусть требуется решить систему n линейных алгебраических уравнений с n неизвестными:  

Алгоритм метода Гаусса с выбором главного элемента по столбцам.
1. Для m = 1, 2, …, n – 1 выполним преобразования: Найдем максимальный по абсолютной величине элемент в m-ом столбце. Пусть это будет элемент aim. Ес

Итерационный метод
Запишем систему уравнений (3.9) в виде   Ax = b, (3.21) где A — матрица коэффициентов, а b

Метод Зейделя
Пусть требуется решить систему уравнений (3.1):   (3.25)

Погрешность решения и обусловленность системы уравнений
Рассмотрим влияние погрешности правой части и свойств матрицы системы линейных уравнений на погрешность решения. Пусть правая часть системы задана приближенно, с погрешностью η:  

Вычисление определителя и обратной матрицы
Вычисление определителя матрицы является классическим примером задач, для решения которых важно найти эффективные алгоритмы. При непосредственном раскрытии определителя квадратной матрицы

Собственные числа и собственные векторы матрицы
Приведем основные определения и теоремы, необходимые для решения практических задач вычисления собственных чисел и собственных векторов матриц. Определение 3.5. Собственны

Алгоритм определения наибольшего по модулю собственного значения и соответствующего собственного вектора матрицы с положительными элементами.
1. Зададим начальное приближение x0 к собственному вектору; k = 0; 2. Вычисляем следующие приближения xk

Метод скалярных произведений
Рассмотрим метод скалярных произведений [7] для определения наибольшего собственного значения и соответствующего собственного вектора действительной матрицы A. Теорема 3.10.

Алгоритм метода скалярных произведений.
1. Зададим начальные приближения: x0 — к собственному вектору матрицы A и y0 = x0 — к

Алгоритм вычисления очередного (m + 1)-го собственного значения и соответствующего собственного вектора.
0. Выберем начальное приближение ; k = 0; 1. Вычисляем k-е прибл

Задачи для самостоятельного решения.
Решить систему линейных уравнений Ax = b в электронных таблицах методом Гаусса. Вычислить определитель матрицы A методом Гаусса. Найти обратну

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги