рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Алгоритм определения наибольшего по модулю собственного значения и соответствующего собственного вектора матрицы с положительными элементами.

Алгоритм определения наибольшего по модулю собственного значения и соответствующего собственного вектора матрицы с положительными элементами. - раздел Математика, Вычислительные методы линейной алгебры 1. Зададим Начальное Приближение X0 К Собс...

1. Зададим начальное приближение x0 к собственному вектору; k = 0;

2. Вычисляем следующие приближения xk+1 формулам

 

(3.40)

3. Если |λk+1 – λk| ≥ ε, переходим к пункту 2, иначе — к 4;

4. Конец.

 

Критерием для остановки итераций является условие |λk+1 – λk| < ε, где ε — заданная погрешность.

В (3.40) можно вычислить сначала k-ю степень матрицы A и умножить её на вектор x0 (см. пример 3.10), а в формуле для λk можно брать отношение ненулевой координаты вектора xk+1 к соответствующей координате вектора xk, которая тоже не должна быть равной нулю. Так как заранее не известно, какие координаты собственного вектора не равны нулю, то лучше брать отношение сумм координат.

Пример 3.10. Найти наибольшее по модулю собственное значение и соответствующий собственный вектор матрицы A из примера 3.9.

Решение. Проведем расчеты в программе Mathcad. Вычислим
x10 = A10x0 и x11 = A11x0 и найдем собственное значение как отношение сумм координат векторов x11 и x10, а затем нормируем x11:

 

Полученные результаты практически совпадают с решением предыдущего примера 3.9.

Составим на C++ программу вычисления наибольшего по модулю собственного значения и соответствующего собственного вектора матрицы A по формулам (3.40):

 

#include <iostream.h>

#include <except.h>

#include <math.h>

int EigenMax(long double **a, long double *eig_val,long double *x0,

long double *x1, long double eps, const int n, int k_max);

int main(){

long double **a, *x0, *x1, eigv, eps; int i,j,n,k_max;

cout <<"n input n = " ; cin >> n;

cout <<"n input k_max = " ; cin >> k_max;

cout <<"n input eps = " ; cin >> eps;

try {

a= new long double*[n]; for(i=0;i<n;i++) a[i]=new long double[n];

x0= new long double[n]; x1= new long double[n];

}

catch (xalloc){cout <<"nCould not allocaten"; exit(-1);}

cout <<"n input matrix a n";

for (i=0; i<n; i++)for (j=0; j<n; j++)cin >> a[i][j];

for (i=0; i<n; i++){cout << "n";for (j=0; j<n; j++)cout <<" "<< a[i][j];}

cout <<"n input vector x0n";

for (i=0; i<n; i++)cin >> x0[i];

for (i=0; i<n; i++)cout << "n x0[" << i <<"] =" << x0[i];

eigv = 0;

EigenMax(a, &eigv, x0, x1,eps, n, k_max);

cout << "n Max Eigen Value = " << eigv;

cout << "n Eigen Vector: " ;

for (i=0; i<n; i++)cout << "n x1[" << i <<"] =" << x1[i];

cin >> i; // for pause

for(i = 0; i < n; i++) delete[] a[i];

delete a;

delete[] x0;

delete[] x1;

return 0;

}//end main

int EigenMax(long double **a, long double *eig_val,long double *x0,

long double *x1, long double eps, const int n, int k_max){

int i, j, k; long double xerr, xnrm, eig0, s, s0, s1;

k = 0;

do { eig0 = *eig_val;

for (i = 0; i < n; i++){

s = 0; for (j = 0; j < n; j++)s += a[i][j]*x0[j]; x1[i] = s;}

s0 = 0; s1 = 0;

for (i = 0; i < n; i++){s0 += x0[i]; s1 += x1[i];}

*eig_val = s1/s0; xerr = fabs(*eig_val - eig0);

xnrm = 0;

for (i = 0; i <= n-1; i++) xnrm += x1[i]*x1[i];

xnrm = sqrt(xnrm);

for (i = 0; i < n; i++){x1[i] = x1[i]/xnrm; x0[i] = x1[i]; }

k = k + 1; if (k > k_max)break;

}while (xerr > eps);

return 0;

}// end EigenMax

 

Найдем с помощью этой программы наибольшее собственное значение матрицы из примера 3.10:

 

Input n = 3

Input k_max = 1000

Input eps = 0.000001

Input matrix a

3 1 0 1 2 0 0 0 2

3 1 0

1 2 0

0 0 2

Input vector x0

Max Eigen Value = 3.61795

Eigen Vector:

x1[0] =0.850651

x1[1] =0.525731

x1[2] =3.81633e–05

 

Результаты с заданной точностью совпадают со значениями, найденными в примерах 3.9, 3.10.

– Конец работы –

Эта тема принадлежит разделу:

Вычислительные методы линейной алгебры

Вычислительные методы линейной алгебры изучают численные методы решения следующих задач... Решить систему линейных алгебраических уравнений СЛАУ... Вычислить определитель квадратной матрицы A...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Алгоритм определения наибольшего по модулю собственного значения и соответствующего собственного вектора матрицы с положительными элементами.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Нормы векторов и матриц
Приведем определения норм векторов и матриц [1]. Пусть задан вектор x= (x1, x2, …, xn)T. Наиболее час

Решение систем линейных алгебраических уравнений
Теоретические условия существования и единственности решения систем линейных уравнений известны — главный определитель не должен быть равен нулю. Тогда решение можно найти по правилу Крамера

Метод Гаусса для решения систем линейных уравнений
Пусть требуется решить систему n линейных алгебраических уравнений с n неизвестными:  

Алгоритм метода Гаусса с выбором главного элемента по столбцам.
1. Для m = 1, 2, …, n – 1 выполним преобразования: Найдем максимальный по абсолютной величине элемент в m-ом столбце. Пусть это будет элемент aim. Ес

Итерационный метод
Запишем систему уравнений (3.9) в виде   Ax = b, (3.21) где A — матрица коэффициентов, а b

Метод Зейделя
Пусть требуется решить систему уравнений (3.1):   (3.25)

Погрешность решения и обусловленность системы уравнений
Рассмотрим влияние погрешности правой части и свойств матрицы системы линейных уравнений на погрешность решения. Пусть правая часть системы задана приближенно, с погрешностью η:  

Вычисление определителя и обратной матрицы
Вычисление определителя матрицы является классическим примером задач, для решения которых важно найти эффективные алгоритмы. При непосредственном раскрытии определителя квадратной матрицы

Собственные числа и собственные векторы матрицы
Приведем основные определения и теоремы, необходимые для решения практических задач вычисления собственных чисел и собственных векторов матриц. Определение 3.5. Собственны

Метод скалярных произведений
Рассмотрим метод скалярных произведений [7] для определения наибольшего собственного значения и соответствующего собственного вектора действительной матрицы A. Теорема 3.10.

Алгоритм метода скалярных произведений.
1. Зададим начальные приближения: x0 — к собственному вектору матрицы A и y0 = x0 — к

Алгоритм вычисления очередного (m + 1)-го собственного значения и соответствующего собственного вектора.
0. Выберем начальное приближение ; k = 0; 1. Вычисляем k-е прибл

Задачи для самостоятельного решения.
Решить систему линейных уравнений Ax = b в электронных таблицах методом Гаусса. Вычислить определитель матрицы A методом Гаусса. Найти обратну

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги