рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Мощность множества

Мощность множества - раздел Математика, АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ   При Исследовании Отношений Между Множествами Большой Интерес ...

 

При исследовании отношений между множествами большой интерес представляет "объем" множеств, число элементов в них. Но разговор о числе элементов понятен и обоснован, если это число конечное. Множества, состоящие из конечного числа элементов, будем называть конечными. Однако, многие из множеств, рассматриваемых в математике, не являются конечными, например, множество действительных чисел, множество точек на плоскости, множество непрерывных функций, заданных на некотором отрезке и т.д. Для количественной характеристики бесконечных (да и конечных) множеств в теории множеств используется понятие мощности множества.

Будем говорить, что множества и имеют одинаковую мощность, если существует взаимно однозначное отображение множества на множество (заметим, что в этом случае существует и взаимно однозначное отображение множества B на множество A).

Если множества и имеют одинаковую мощность, то будем говорить, что они эквивалентны, это обозначается: .

Пусть - произвольные множества, тогда

 

т.е. любое множество эквивалентно самому себе; если множество эквивалентно множеству , то эквивалентно ; если, наконец, множество эквивалентно множеству , которое эквивалентно множеству , то эквивалентно .

Множество, эквивалентное некоторому своему собственному подмножеству, называется бесконечным.

Если конечные множества имеют разное число элементов, то ясно, что одно из них содержит меньше элементов, чем другое. А как сравнить в этом смысле бесконечные множества? Будем говорить, что мощность множества меньше мощности множества , если существует подмножество множества , эквивалентное множеству , но сами множества и не являются эквивалентными.

Мощность конечного множества равна числу его элементов. Для бесконечных множеств понятие "мощность" является обобщением понятия "количество элементов".

Укажем некоторые, полезные для дальнейшего, классы множеств.

Множество называется счетным, если оно имеет такую же мощность как и некоторое подмножество множества (множества натуральных чисел). Счетное множество может быть конечным или бесконечным.

Бесконечное множество является счетным тогда и только тогда, когда оно эквивалентно множеству натуральных чисел .

Заметим, что любое множество, мощность которого меньше мощности бесконечного счетного множества, является конечным.

Множество действительных чисел на отрезке от нуля до единицы имеет мощность континуум, и само часто называется континуумом. Мощность этого множества больше мощности бесконечного счетного множества. Возникает вопрос: имеется ли множество, мощность которого больше мощности бесконечного счетного множества, но меньше мощности континуум. Эта задача была сформулирована в 1900 году одним из крупнейших математиков мира Давидом Гильбертом. Оказалось, что эта задача имеет несколько неожиданный ответ: можно считать, что такое множество существует, а можно считать, что его не существует. Получающиеся при этом математические теории будут непротиворечивыми. Доказательство этого факта было доложено американским ученым Коэном в 1965 году на всемирном конгрессе математиков в Москве. Отметим, что ситуация с этой задачей напоминает ситуацию с пятым постулатом Евклида: через точку, лежащую вне данной прямой можно провести только одну прямую, параллельную данной. Как показал Лобачевский, отказ от этого постулата не приводит к противоречиям. Мы можем строить геометрию, для которой этот постулат имеет место, и геометрии, для которых он не верен.

В заключение приведем несколько примеров, демонстрирующих методику доказательства эквивалентности множеств.

Пример 1.11. Множество целых чисел счетное.

Понятно, что рассматриваемое множество бесконечное (множество натуральных чисел является его подмножеством).

Для доказательства счетности множества целых чисел надо построить взаимно однозначное отображение между множеством натуральных чисел и рассматриваемым множеством. Требуемое отображение задается правилом: расположим целые числа следующим образом:

 

. . . . . .

 

и перенумеруем их натуральными числами, присвоив им номера (они указаны рядом с рассматриваемыми целыми числами). Очевидно, что каждое целое число получит свой номер, при этом разные числа получат разные номера. Верно и обратное: для каждого натурального числа (для каждого номера) найдется и при том единственное целое число, стоящее под этим номером. Таким образом, требуемое взаимно однозначное отображение построено.

Пример 1.12. Множество рациональных чисел счетное.

Известно, что любое рациональное число можно представить в виде несократимой дроби p/q, используя это представление расположим рациональные числа в соответствии со схемой:

 

 

 

 

 

– Конец работы –

Эта тема принадлежит разделу:

АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ... УЧЕБНОЕ ПОСОБИЕ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Мощность множества

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Аксиоматический метод
  В современной математике большое распространение получил аксиоматический метод. Источником его следует считать открытие Лобачевским неевклидовой геометрии. Сущность аксиоматического

Алгебра высказываний
  Учение о высказываниях является первой из формальных логических теорий. Алгебра высказываний представляет самостоятельный интерес и имеет приложения в других отраслях науки и техник

Логика предикатов
  Логика предикатов вводит в рассмотрение высказывания, отнесенные к предметам. В ней уже имеется расчленение высказывания на субъект и предикат. Пусть - некоторое множество

Множества и их элементы
  Создателем теории множеств является Кантор, заложивший ее основы в конце прошлого века. Из его теории получались практически все накопленные математикой к тому времени результаты. Н

Отображения множеств
  Изучим теперь некоторые вопросы, связанные с отношениями между множествами. Будем говорить, что между множествами и задано отношение ( и находятся в отношении ), есл

Отображением
Определение 1.1.3. Если - элемент из , то отвечающий ему элемент из , называется его образом (при отображении ), а множество всех тех , для которых , называется прообразом и обозна

Системы линейных уравнений
  Рассмотрим для начала систему двух линейных уравнений с двумя неизвестными и систему трех линейных уравнений с тремя неизвестными. Такие системы изучаются в средней школе.

Матрицы и действия над ними
  Прямоугольная таблица чисел (2.12)   называется матрицей из строк и столбцов. Числа ( ) называются элементами матрицы. Заметим, что в о

Запись систем в матричной форме и их решение
  Рассмотрим уравнение , где , , ║X 4ij 0║. Если элементы матриц и аданы, а элементы матрицы не известны, то написанное матричное равенство называется

Определители и их свойства
  Изучение определителей начнем с рассмотрения простейшего случай – со случая двух уравнений с двумя неизвестными:     Умножим первое уравнение на

Правило Крамера
  Рассмотрим теперь частный случай системы (2.11), а именно случай, когда s=n, т.е. когда число уравнений системы и число неизвестных в ней одинаковы: (2.23) Останов

Решение системы линейных уравнений с неизвестными методом Гаусса
  Рассмотрим снова систему линейных уравнений с неизвестными:     Значительно более удобным, чем правило Крамера, при решении систем линейных урав

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги