Мощность множества

 

При исследовании отношений между множествами большой интерес представляет "объем" множеств, число элементов в них. Но разговор о числе элементов понятен и обоснован, если это число конечное. Множества, состоящие из конечного числа элементов, будем называть конечными. Однако, многие из множеств, рассматриваемых в математике, не являются конечными, например, множество действительных чисел, множество точек на плоскости, множество непрерывных функций, заданных на некотором отрезке и т.д. Для количественной характеристики бесконечных (да и конечных) множеств в теории множеств используется понятие мощности множества.

Будем говорить, что множества и имеют одинаковую мощность, если существует взаимно однозначное отображение множества на множество (заметим, что в этом случае существует и взаимно однозначное отображение множества B на множество A).

Если множества и имеют одинаковую мощность, то будем говорить, что они эквивалентны, это обозначается: .

Пусть - произвольные множества, тогда

 

т.е. любое множество эквивалентно самому себе; если множество эквивалентно множеству , то эквивалентно ; если, наконец, множество эквивалентно множеству , которое эквивалентно множеству , то эквивалентно .

Множество, эквивалентное некоторому своему собственному подмножеству, называется бесконечным.

Если конечные множества имеют разное число элементов, то ясно, что одно из них содержит меньше элементов, чем другое. А как сравнить в этом смысле бесконечные множества? Будем говорить, что мощность множества меньше мощности множества , если существует подмножество множества , эквивалентное множеству , но сами множества и не являются эквивалентными.

Мощность конечного множества равна числу его элементов. Для бесконечных множеств понятие "мощность" является обобщением понятия "количество элементов".

Укажем некоторые, полезные для дальнейшего, классы множеств.

Множество называется счетным, если оно имеет такую же мощность как и некоторое подмножество множества (множества натуральных чисел). Счетное множество может быть конечным или бесконечным.

Бесконечное множество является счетным тогда и только тогда, когда оно эквивалентно множеству натуральных чисел .

Заметим, что любое множество, мощность которого меньше мощности бесконечного счетного множества, является конечным.

Множество действительных чисел на отрезке от нуля до единицы имеет мощность континуум, и само часто называется континуумом. Мощность этого множества больше мощности бесконечного счетного множества. Возникает вопрос: имеется ли множество, мощность которого больше мощности бесконечного счетного множества, но меньше мощности континуум. Эта задача была сформулирована в 1900 году одним из крупнейших математиков мира Давидом Гильбертом. Оказалось, что эта задача имеет несколько неожиданный ответ: можно считать, что такое множество существует, а можно считать, что его не существует. Получающиеся при этом математические теории будут непротиворечивыми. Доказательство этого факта было доложено американским ученым Коэном в 1965 году на всемирном конгрессе математиков в Москве. Отметим, что ситуация с этой задачей напоминает ситуацию с пятым постулатом Евклида: через точку, лежащую вне данной прямой можно провести только одну прямую, параллельную данной. Как показал Лобачевский, отказ от этого постулата не приводит к противоречиям. Мы можем строить геометрию, для которой этот постулат имеет место, и геометрии, для которых он не верен.

В заключение приведем несколько примеров, демонстрирующих методику доказательства эквивалентности множеств.

Пример 1.11. Множество целых чисел счетное.

Понятно, что рассматриваемое множество бесконечное (множество натуральных чисел является его подмножеством).

Для доказательства счетности множества целых чисел надо построить взаимно однозначное отображение между множеством натуральных чисел и рассматриваемым множеством. Требуемое отображение задается правилом: расположим целые числа следующим образом:

 

. . . . . .

 

и перенумеруем их натуральными числами, присвоив им номера (они указаны рядом с рассматриваемыми целыми числами). Очевидно, что каждое целое число получит свой номер, при этом разные числа получат разные номера. Верно и обратное: для каждого натурального числа (для каждого номера) найдется и при том единственное целое число, стоящее под этим номером. Таким образом, требуемое взаимно однозначное отображение построено.

Пример 1.12. Множество рациональных чисел счетное.

Известно, что любое рациональное число можно представить в виде несократимой дроби p/q, используя это представление расположим рациональные числа в соответствии со схемой: