рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Пары форм.

Пары форм. - раздел Математика, АЛГЕБРА   Пусть Дана Пара Действительных Квадратичных Форм От ...

 

Пусть дана пара действительных квадратичных форм от неизвестных, и . Существует ли такое невырожденное линейное преобразование неизвестных , которое одновременно приводило бы обе эти формы к каноническому виду?

В общем случае ответ будет отрицательным. Рассмотрим, например, пару форм

.

Пусть существует невырожденное линейное преобразование

приводящее обе эти формы к каноническому виду. Для того чтобы форма могла быть приведена указанным преобразованием к каноническому виду, один из коэффициентов должен быть равен нулю, иначе вошло бы слагаемое . Меняя, если нужно, нумерацию неизвестных , можно положить, что и поэтому . Мы получим теперь, однако, что

.

Так как форма также должна была перейти в канонический вид, то , т. е. , что вместе с противоречит невырожденности указанного линейного преобразования.

Ситуация будет иной, если мы положим, что хотя бы одна из наших форм, например , является положительно определенной.

ТЕОРЕМА. Если и пара действительных квадратичных форм от неизвестных, причем вторая из них положительно определенная, то существует невырожденное линейное преобразование, одновременно приводящее форму к нормальному виду, а форму к каноническому виду.

ДОКАЗАТЕЛЬСТВО. Выполним сначала невырожденное линейное преобразование неизвестных ,

,

приводящее положительно определенную форму к нормальному виду,

.

Форма перейдет при этом в некоторую форму от новых неизвестных,

.

Совершим теперь ортогональное преобразование неизвестных ,

,

приводящее форму к главным осям,

.

Это преобразование переводит сумму квадратов неизвестных в сумму квадратов неизвестных (что следует из формулы ). В результате мы получаем

,

.

т. е. линейное преобразование

является искомым. □

 


– Конец работы –

Эта тема принадлежит разделу:

АЛГЕБРА

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ... ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ... Государственное образовательное учреждение...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Пары форм.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Евклидовы и унитарные пространства.
  Понятие мерного линейного пространства

Изоморфизм унитарных пространств.
Два унитарных (или евклидовых) пространства и

Линейные функции.
Рассмотрим произвольное линейное пространство над полем

ЗАДАЧИ К ГЛАВЕ I.
1. Выяснить, являются ли ортогональными в евклидовом пространстве следующие системы векторов: а) ;

Приведение квадратичной формы к каноническому виду.
  Теория квадратичных форм берёт своё начало в аналитической геометрии, а именно в теории кривых второго порядка. Известно, что уравнение центральной кривой второго порядка на плоскос

Приведение квадратичной формы к главным осям.
  Теория приведения квадратичной формы к каноническому виду, изложенная в предыдущем параграфе, построена по аналогии с геометрической теорией центральных кривых второго порядка, но н

Закон инерции.
  Канонический вид, к которому приводится данная квадратичная форма, определяется неоднозначно. Всякая квадратичная форма может быть приведена к каноническому виду многими различными

Распадающиеся квадратичные формы.
  Перемножая любые две линейные формы от неизвестных,

Положительно определенные формы.
Квадратичная форма от неизвестных с дейст

ЗАДАЧИ К ГЛАВЕ II.
15. Записать матрицу квадратичной формы , если: а)

Матрицы, их эквивалентность.
  В этой главе займёмся изучением квадратных матриц порядка , элементами которых служат многочлены произв

Второй критерий эквивалентности.
матрица называется унимодулярной

Эквивалентностью их характеристических матриц.
  Как известно [1], две квадратные матрицы порядка подобны тогда и только тогда, когда они задают один и

Жорданова нормальная форма.
В этом параграфе будем рассматривать квадратные матрицы порядка с элементами из поля

Приведение матрицы к жордановой нормальной форме.
  В предыдущем параграфе мы выяснили, что если матрица с элементами из поля

Минимальный многочлен.
Пусть дана квадратная матрица порядка с э

ЗАДАЧИ К ГЛАВЕ III.
22. Привести следующие матрицы к нормальной диагональной форме посредством элементарных преобразований:

ОТВЕТЫ.
1. а) да; б) нет; в) да; г) да; д) нет. 2. а) да; б) нет; в) да; г) да; д

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги