рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Эквивалентностью их характеристических матриц.

Эквивалентностью их характеристических матриц. - раздел Математика, АЛГЕБРА   Как Известно [1], Две Квадратные Матрицы Порядка ...

 

Как известно [1], две квадратные матрицы порядка подобны тогда и только тогда, когда они задают один и тот же линейный оператор в разных базисах. Однако мы не можем пока ответить на вопрос, подобны ли данные числовые матрицы и (т. е. матрицы с элементами из основного поля ). Тем не менее, их характеристические матрицы и являются матрицами, и вопрос об эквивалентности этих матриц решается вполне эффективно. Ответ на вопрос о связи подобия числовых матриц с эквивалентностью их характеристических матриц даёт следующая

ТЕОРЕМА. Матрицы и с элементами из поля тогда и только тогда подобны, когда их характеристические матрицы и эквивалентны.

ДОКАЗАТЕЛЬСТВО. Пусть матрицы и подобны, т. е. над полем существует такая невырожденная матрица , что

.

Тогда

.

Невырожденные числовые матрицы и являются, однако, унимодулярными матрицами. Матрица получена умножением матрицы слева и справа на унимодулярные матрицы, т. е. .

Обратно, пусть

.

Тогда существуют такие унимодулярные матрицы и , что

. (1)

Учитывая, что для унимодулярных матриц обратные матрицы существуют и являются матрицами, выведем из (1) равенства, которые будут использованы в дальнейшем для доказательства:

(2)

Так как матрица имеет по степень , причем старшим коэффициентом соответствующего матричного многочлена служит невырожденная матрица , то к матрицам и можно применить алгоритм деления с остатком. Значит, существуют такие матрицы и , причём, степень , если , равна по , что

. (3)

Аналогично

. (4)

Используя (3) и (4) и учитывая (1), получаем:

или, применяя (2),

Квадратная скобка, стоящая справа, равна в действительности нулю: в противном случае она, являясь матрицей, так как и и есть матрицы, имела бы по меньшей мере степень , а тогда степень фигурной скобки была бы не меньше и, следовательно, степень всей правой части была бы не меньше . Это, однако, невозможно, так как слева стоит матрица степени .

Таким образом,

,

откуда, приравнивая матричные коэффициенты при одинаковых степенях , получаем

, (5)

. (6)

Равенство (6) показывает, что числовая матрица не только отлична от нуля, но даже является невырожденной, причем

,

а тогда равенство (5) принимает вид

,

что и доказывает подобие матриц и . □

Пример 3. Являются ли следующие матрицы подобными

, ?

Решение. Их характеристические матрицы эквивалентны, так как приводятся к одному и тому же каноническому виду

,

поэтому матрицы и подобны.

 

 

– Конец работы –

Эта тема принадлежит разделу:

АЛГЕБРА

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ... ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ... Государственное образовательное учреждение...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Эквивалентностью их характеристических матриц.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Евклидовы и унитарные пространства.
  Понятие мерного линейного пространства

Изоморфизм унитарных пространств.
Два унитарных (или евклидовых) пространства и

Линейные функции.
Рассмотрим произвольное линейное пространство над полем

ЗАДАЧИ К ГЛАВЕ I.
1. Выяснить, являются ли ортогональными в евклидовом пространстве следующие системы векторов: а) ;

Приведение квадратичной формы к каноническому виду.
  Теория квадратичных форм берёт своё начало в аналитической геометрии, а именно в теории кривых второго порядка. Известно, что уравнение центральной кривой второго порядка на плоскос

Приведение квадратичной формы к главным осям.
  Теория приведения квадратичной формы к каноническому виду, изложенная в предыдущем параграфе, построена по аналогии с геометрической теорией центральных кривых второго порядка, но н

Закон инерции.
  Канонический вид, к которому приводится данная квадратичная форма, определяется неоднозначно. Всякая квадратичная форма может быть приведена к каноническому виду многими различными

Распадающиеся квадратичные формы.
  Перемножая любые две линейные формы от неизвестных,

Положительно определенные формы.
Квадратичная форма от неизвестных с дейст

Пары форм.
  Пусть дана пара действительных квадратичных форм от неизвестных,

ЗАДАЧИ К ГЛАВЕ II.
15. Записать матрицу квадратичной формы , если: а)

Матрицы, их эквивалентность.
  В этой главе займёмся изучением квадратных матриц порядка , элементами которых служат многочлены произв

Второй критерий эквивалентности.
матрица называется унимодулярной

Жорданова нормальная форма.
В этом параграфе будем рассматривать квадратные матрицы порядка с элементами из поля

Приведение матрицы к жордановой нормальной форме.
  В предыдущем параграфе мы выяснили, что если матрица с элементами из поля

Минимальный многочлен.
Пусть дана квадратная матрица порядка с э

ЗАДАЧИ К ГЛАВЕ III.
22. Привести следующие матрицы к нормальной диагональной форме посредством элементарных преобразований:

ОТВЕТЫ.
1. а) да; б) нет; в) да; г) да; д) нет. 2. а) да; б) нет; в) да; г) да; д

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги