рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Закон инерции.

Закон инерции. - раздел Математика, АЛГЕБРА   Канонический Вид, К Которому Приводится Данная Квадратичная Ф...

 

Канонический вид, к которому приводится данная квадратичная форма, определяется неоднозначно. Всякая квадратичная форма может быть приведена к каноническому виду многими различными способами. Возникает вопрос, что общего у тех различных канонических квадратичных форм, к которым приводится данная форма ? Этот вопрос тесно связан с другим вопросом: при каком условии одна из двух данных квадратичных форм может быть переведена в другую невырожденным линейным преобразованием? Ответ на эти вопросы, оказывается, зависит от того, рассматриваются ли комплексные или действительные квадратичные формы.

Рассмотрим вначале произвольные комплексные квадратичные формы, допуская употребление невырожденных линейных преобразований также с произвольными комплексными коэффициентами. Известно, что всякая квадратичная форма неизвестных, имеющая ранг , приводится к каноническому виду

,

где все коэффициенты отличны от нуля. Пользуясь тем, что из всякого комплексного числа извлекается квадратный корень, выполним следующее невырожденное линейное преобразование:

при ; при .

Оно приводит форму к виду

, (1)

называемому нормальным; это просто сумма квадратов неизвестных с коэффициентами, равными единице.

Из равенства видно, что нормальный вид зависит лишь от ранга формы . Тогда, если формы и от неизвестных имеют одинаковый ранг , то можно перевести в (1), а затем (1) в , т. к. преобразование, обратное невырожденному, также невырожденное. Таким образом, существует невырожденное линейное преобразование, переводящее в . Так как, с другой стороны, никакое невырожденное линейное преобразование не изменяет ранга формы, то мы приходим к следующему результату:

ТЕОРЕМА 1. Две комплексные квадратичные формы от неизвестных тогда и только тогда переводятся друг в друга невырожденными линейными преобразованиями с комплексными коэффициентами, если эти формы имеют один и тот же ранг.

 

Из этой теоремы без труда вытекает

СЛЕДСТВИЕ. Каноническим видом комплексной квадратичной формы ранга может служить всякая сумма квадратов неизвестных с любыми отличными от нуля комплексными коэффициентами. □

Иная ситуация в том случае, когда рассматриваются действительные квадратичные формы и допускаются лишь линейные преобразования с действительными коэффициентами. В этом случае уже не всякую форму можно привести к виду (1), так как это могло бы потребовать извлечения квадратного корня из отрицательного числа. Если, однако, мы назовем теперь нормальным видом квадратичной формы сумму квадратов нескольких неизвестных с коэффициентами или , то легко показать, что всякую действительную квадратичную форму можно привести невырожденным линейным преобразованием с действительными, коэффициентами к нормальному виду.

В самом деле, форма ранга от неизвестных приводится к каноническому виду, который можно записать следующим образом (меняя, если нужно, нумерацию неизвестных):

, ,

где все числа отличны от нуля и положительны. Тогда невырожденное линейное преобразование с действительными коэффициентами:

при ; при ,

 

приводит к нормальному виду

.

Общее число входящих сюда квадратов будет равно рангу формы.

Действительная квадратичная форма может быть приведена к нормальному виду многими различными преобразованиями, однако с точностью до нумерации неизвестных она приводится лишь к одному нормальному виду. Это показывает следующая:

ТЕОРЕМА 2. (закон инерции действительных квадратичных форм). Число положительных и число отрицательных квадратов в нормальном виде, к которому приводится данная квадратичная форма с действительными коэффициентами действительным невырожденным линейным преобразованием, не зависят от выбора этого преобразования.

ДОКАЗАТЕЛЬСТВО. Пусть квадратичная форма ранга от неизвестных двумя способами приведена к нормальному виду:

(2)

Так как переход от неизвестных к неизвестным был невырожденным линейным преобразованием, то обратное преобразование, выражающее через также будет невырожденным:

. (3)

Аналогично

, (4)

причем определители из коэффициентов отличны от нуля. Коэффициенты же как в (3), так и в (4) действительные числа.

Предположим теперь, что , и напишем систему равенств

(5)

Если левые части этих равенств будут заменены их выражениями из (3) и (4), мы получим систему линейных однородных уравнений с неизвестными . Число уравнений в этой системе меньше числа неизвестных, поэтому, как мы знаем из [1], наша система обладает ненулевым действительным решением .

Заменим теперь в равенстве (2) все и все их выражениями (3) и (4), а затем подставим вместо неизвестных числа .Если для краткости через и будут обозначены значения неизвестных и , получающиеся после такой подстановки, то (2) превращается, ввиду (5), в равенство

. (6)

Так как все коэффициенты в (3) и (4) действительные, то все квадраты, входящие в равенство (6), положительны, а поэтому (6) влечет за собой равенство нулю всех этих квадратов; отсюда следуют равенства

.

С другой стороны, по самому выбору чисел

.

Таким образом, система линейных однородных уравнений

,

с неизвестными обладает, ввиду (7) и (8), ненулевым решением , т. е. определитель этой системы должен быть равен нулю. Это противоречит, однако, тому, что преобразование (4) предполагалось невырожденным. К такому же противоречию мы придем при . Отсюда следует равенство . □

Число положительных квадратов в той нормальной форме, к которой приводится данная действительная квадратичная форма , называется положительным индексом инерции этой формы, число отрицательных квадратов отрицательным индексом инерции. Разность между положительным и отрицательным индексами инерции сигнатурой формы .

Понятно, что при заданном ранге формы задание любого из определенных сейчас трех чисел вполне определяет два других, и поэтому в дальнейших формулировках можно будет говорить о любом из этих трех чисел.

ТЕОРЕМА 3. Две квадратичные формы от неизвестных с действительными коэффициентами тогда и только тогда переводятся друг в друга невырожденными действительными линейными преобразованиями, если эти формы имеют одинаковые ранги и одинаковые сигнатуры.

ДОКАЗАТЕЛЬСТВО. Действительно, пусть форма переводится в форму невырожденным действительным преобразованием. Мы знаем, что это преобразование не меняет ранга формы. Оно не может менять и сигнатуры, так как в противном случае и приводились бы к различным нормальным видам, а тогда форма приводилась бы, в противоречие с законом инерции, к этим обоим нормальным видам. Обратно, если формы и имеют одинаковые ранги и одинаковые сигнатуры, то они приводятся к одному и тому же нормальному виду и поэтому могут быть переведены друг в друга. □

 

 

– Конец работы –

Эта тема принадлежит разделу:

АЛГЕБРА

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ... ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ... Государственное образовательное учреждение...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Закон инерции.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Евклидовы и унитарные пространства.
  Понятие мерного линейного пространства

Изоморфизм унитарных пространств.
Два унитарных (или евклидовых) пространства и

Линейные функции.
Рассмотрим произвольное линейное пространство над полем

ЗАДАЧИ К ГЛАВЕ I.
1. Выяснить, являются ли ортогональными в евклидовом пространстве следующие системы векторов: а) ;

Приведение квадратичной формы к каноническому виду.
  Теория квадратичных форм берёт своё начало в аналитической геометрии, а именно в теории кривых второго порядка. Известно, что уравнение центральной кривой второго порядка на плоскос

Приведение квадратичной формы к главным осям.
  Теория приведения квадратичной формы к каноническому виду, изложенная в предыдущем параграфе, построена по аналогии с геометрической теорией центральных кривых второго порядка, но н

Распадающиеся квадратичные формы.
  Перемножая любые две линейные формы от неизвестных,

Положительно определенные формы.
Квадратичная форма от неизвестных с дейст

Пары форм.
  Пусть дана пара действительных квадратичных форм от неизвестных,

ЗАДАЧИ К ГЛАВЕ II.
15. Записать матрицу квадратичной формы , если: а)

Матрицы, их эквивалентность.
  В этой главе займёмся изучением квадратных матриц порядка , элементами которых служат многочлены произв

Второй критерий эквивалентности.
матрица называется унимодулярной

Эквивалентностью их характеристических матриц.
  Как известно [1], две квадратные матрицы порядка подобны тогда и только тогда, когда они задают один и

Жорданова нормальная форма.
В этом параграфе будем рассматривать квадратные матрицы порядка с элементами из поля

Приведение матрицы к жордановой нормальной форме.
  В предыдущем параграфе мы выяснили, что если матрица с элементами из поля

Минимальный многочлен.
Пусть дана квадратная матрица порядка с э

ЗАДАЧИ К ГЛАВЕ III.
22. Привести следующие матрицы к нормальной диагональной форме посредством элементарных преобразований:

ОТВЕТЫ.
1. а) да; б) нет; в) да; г) да; д) нет. 2. а) да; б) нет; в) да; г) да; д

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги