рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Общее уравнение плоскости, проходящей через точку.

Общее уравнение плоскости, проходящей через точку. - раздел Математика, Алгебра и аналитическая геометрия. Понятие матрица, операции над матрицами и их свойства Еще Раз Повторим, Что Точка ...

Еще раз повторим, что точка принадлежит плоскости, которая задана в прямоугольной системе координат в трехмерном пространстве общим уравнением плоскости , если при подстановке координат точки в уравнение оно обращается в тождество.

Пример.

Принадлежат ли точки и плоскости, общее уравнение которой имеет вид .

Решение.

Подставим координаты точки М0 в общее уравнение плоскости: . В результате приходим к верному равенству, следовательно, точка лежит в плоскости.

Проделаем такую же процедуру с координатами точки N0: . Получаем неверное равенство, поэтому, точка не лежит в плоскости, определенной общим уравнением плоскости .

Ответ:

М0 лежит в плоскости, а N0 – не лежит.

Из доказательства теоремы об общем уравнении плоскости виден один полезный факт: вектор является нормальным вектором плоскости . Таким образом, если мы знаем вид общего уравнения плоскости, то мы сразу можем записать координаты нормального вектора этой плоскости.

Пример.

Плоскость в прямоугольной системе координат Oxyz задана общим уравнением плоскости . Запишите координаты всех нормальных векторов этой плоскости.

13. Решение.

Нам известно, что коэффициенты при переменных x, y и z в общем уравнении плоскости являются соответствующими координатами нормального вектора этой плоскости. Следовательно, нормальный вектор заданной плоскости имеет координаты . Множество всех нормальных векторов можно задать как .

Ответ:

Теперь рассмотрим обратную задачу – задачу составления уравнения плоскости, когда известны координаты ее нормального вектора. Очевидно, что существует бесконечно много параллельных плоскостей, нормальным вектором которых является вектор . Поэтому, зададим дополнительное условие, чтобы обозначить одну конкретную плоскость. Будем считать, что точка принадлежит плоскости. Таким образом, задав нормальный вектор и точку плоскости , мы зафиксировали плоскость (смотрите раздел способы задания плоскости в пространстве). Получим общее уравнение этой плоскости.

Общее уравнение плоскости с нормальным вектором имеет вид . Так как точка лежит на плоскости, то ее координаты удовлетворяют уравнению плоскости, следовательно, справедливо равенство . Вычтем из левой и правой части равенства левую и правую части равенства соответственно. При этом получаем уравнение вида , которое является общим уравнением плоскости, проходящей через точку и имеющей направляющий вектор плоскости .

Это уравнение можно было получить и иначе.

Очевидно, что множество точек трехмерного пространства определяют требуемую плоскость тогда и только тогда, когда векторы и перпендикулярны. То есть, тогда и только тогда, когда их скалярное произведение равно нулю: .

Пример.

Напишите уравнение плоскости, если в прямоугольной системе координат Oxyz в пространстве она проходит через точку , а - нормальный вектор этой плоскости.

Решение.

Приведем два решения этой задачи.

Из условия имеем . Подставляем эти данные в общее уравнение плоскости, проходящей через точку :

Теперь второй вариант решения.

Пусть - текущая точка плоскости. Находим координаты вектора по координатам точек начала и конца: . Для получения требуемого общего уравнения плоскости осталось только воспользоваться необходимым и достаточным условием перпендикулярности векторов и :

Ответ:

Существует множество аналогичных задач на составление общего уравнения плоскости, в которых сначала требуется найти координаты нормального вектора плоскости. Самые распространенные из них это задачи на нахождение уравнения плоскости, проходящей через точку параллельно заданной плоскости и задачи на составление уравнения плоскости, проходящей через точку перпендикулярно к заданной прямой.

 

– Конец работы –

Эта тема принадлежит разделу:

Алгебра и аналитическая геометрия. Понятие матрица, операции над матрицами и их свойства

Понятие матрица операции над матрицами и их свойства... Матрица это прямоугольная таблица составленная из чисел которые нельзя... а Сложение матриц поэлементная операция...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Общее уравнение плоскости, проходящей через точку.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие определителя n-го порядка. Вычисление определителя в 2-го и 3-го порядка.
Итак, пусть дана квадратная таблица, состоящая из чисел, расположенных в n строках (горизонтальных рядах) и в n столбцах (вертикальных рядах). С помощью этих чисел по некоторым пр

Теорема Лапласа ( о разложении определителя по элементам строки или столбца) (без доказательства)
Теорема Лапласа. Пусть D – определитель n-го порядка, в котором произвольно выбраны k строк (или столбцов), где 1 ≤k ≤ n – 1. Тогда определитель

Понятие ранга матрицы.
Ранг матрицы — наивысший из порядков миноров этой матрицы, отличных от нуля. Пример 1. Найти методом окаймления миноров ранг матрицы

Системы линейных уравнений.Теорема Кронекера-Капелли ( о совместимости системы).
Система m линейных алгебраических уравнений с n неизвестными (или, линейная система, также употребляется аббревиатура СЛА́У) в линейной а

Необходимость
Пусть система совместна. Тогда существуют числа такие, что

Достаточность
Пусть . Возьмем в матрице

Решение.
Перепишем систему в виде , чтобы стало видно основную матрицу системы

Общее решение неоднородной СЛАУ. Метод Гаусса рения СЛАУ. Вид общего решения неоднородной СЛАУ.
Решение систем линейных алгебраических уравнений общего вида. В общем случае число уравнений системы p не совпадает с числом неизвестных переменных n:

Решение.
Найдем ранг основной матрицы системы . Воспользуемся методом окаймляющих миноров. Минор втор

Решение.
Коэффициент a1 1 отличен от нуля, так что приступим к прямому ходу метода Гаусса, то есть, к исключению неизвестной переменной x1 из всех уравнений системы, кром

Операция сложения двух векторов - правило треугольника.
Покажем как происходит сложение двух векторов. Сложение векторов и

Сложение нескольких векторов - правило многоугольника.
Основываясь на рассмотренной операции сложения двух векторов, мы можем сложить три вектора и более. В этом случае складываются первые два вектора, к полученному результату прибавляется третий векто

Операция умножения вектора на число.
Сейчас разберемся как происходит умножение вектора на число. Умножение вектора на число k соответствует растяжению вектора в k раз при k

Свойства операций над векторами.
Итак, мы определили операцию сложения векторов и операцию умножения вектора на число. При этом для любых векторов

Скалярное произведение векторов и его свойства.
Скалярным произведением двух векторов называется действительное число, равное произведению длин умножаемых векторов на косинус угла между ними. Скалярное произведение вект

Скалярное произведение в координатах.
Покажем как скалярное произведение вычисляется через координаты векторов в прямоугольной системе координат на плоскости и в пространстве. Определение. Скалярным произведен

Свойства скалярного произведения.
Для любых векторов и

Векторное произведение векторов и его свойства.
Векторным произведением двух векторов и

Координаты векторного произведения.
Сейчас дадим второе определение векторного произведения, которое позволяет находить его координаты по координатам заданных векторов и . Определение. В прямоугольной системе коорди

Свойства векторного произведения.
Так как векторное произведение в координатах представимо в виде определителя матрицы , то на

Общее уравнение прямой.
Вид уравнения прямой в прямоугольной системе координат Oxy на плоскости задает следующая теорема. Теорема. Всякое уравнение первой степени с двумя переменными x и

Уравнение прямой в отрезках.
Уравнение прямой вида , где a и b – некоторые действительные числа отличные от

Уравнение прямой с угловым коэффициентом.
Уравнение прямой вида , где x и y - переменные, а k и b – некото

Нормальное уравнение прямой.
Если в общем уравнении прямой вида числа А, В и С таковы, что длина век

Уравнение плоскости.
Теорема. Всякое уравнение вида , где A, B, C и D – неко

Свойства операций над множествами
Свойства перестановочности A ∪ B = B ∪ A A ∩ B = B ∩ A Сочетательное свойство (A ∪ B) ∪ C = A ∪ (B ∪ C) (A ∩

Предел функции.
Преде́л фу́нкции (предельное значение функции) в заданной точке, предельной для области определения функции, — такая величина, к которой стремится рассма

Теоремы о пределах.
Теорема 1.(о единственности предела функции). Функция не может иметь более одного предела. Следствие. Если две функции f(x) и

Замечательные пределы и их следствия.
Первый замечательный предел имеет вид: На практике чаще встречают

Следствия

Определение дифференцируемости.
Операция нахождения производной называется дифференцированием функции. Функция называется дифференцируемой в некоторой точке, если она имеет в этой точке конечную производную, и

Правило дифференцирования.
Следствие 1. Постоянный множитель можно выносить за знак производной:

Геометрический смысл производной. Уравнение касательной.
Углом наклона прямой y = kx+b называют угол , отсчитываемый от полож

Геометрический смысл производной функции в точке.
  Рассмотрим секущую АВ графика функции y = f(x) такую, что точки А и В имеют соответственно координаты

Решение.
Функция определена для всех действительных чисел. Так как (-1; -3) – точка касания, то

Необходимые условия экстремума и достаточные условия экстремума.
Определение возрастающей функции. Функция y = f(x) возрастает на интервале X, если для любых

Достаточные признаки экстремума функции.
Для нахождения максимумов и минимумов функции можно пользоваться любым из трех достаточных признаков экстремума. Хотя самым распространенным и удобным является первый из них.

Условия монотонности и постоянства функции.
Условие (нестрогой) монотонности функции на интервале. Пусть функция имеет производную в каж

Определение первообразной.
Первообразной функции f(x) на промежутке (a; b) называется такая функция F(x), что выполняется равенство

Проверка.
Для проверки результата продифференцируем полученное выражение: В итоге получи

Первообразная произведения константы и функции равна произведению константы и первообразной функции
Достаточным условием существования первообразной у заданной на отрезке функции являе

Определение
Пусть определена на

Геометрический смысл
Определённый интеграл численно равен площади фигуры, ограниченной осью абсцисс, прямыми

Свойства определенного интеграла.
Основные свойства определенного интеграла. Свойство 1. Производная от определённого интеграла по верхнему пределу равна подынтегральной функции, в которую вместо переменной интегрирован

Формула Ньютона-Лейбница ( с доказательством).
Формула Ньютона-Лейбница. Пусть функция y = f(x) непрерывна на отрезке [a; b] и F(x) - одна из первообразных функции на этом отрезке, тогда справедливо рав

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги