рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Векторна алгебра

Векторна алгебра - раздел Математика, Алгебра та геометрія   Одним З Важливих Розділів Даного Курсу Є Загальна Теорія Ліні...

 

Одним з важливих розділів даного курсу є загальна теорія лінійних алгебраїчних рівнянь. Ця теорія ґрунтується на понятті рангу системи векторів, арифметичному просторі. Тому попередньо слід вивчити векторний простір і пов’язані з ним поняття лінійної залежності, базису. Поняття абстрактного векторного простору є природним узагальненням геометричного простору, який в деякому ступеню вивчався в середній школі під назвою площина і простір. Але в шкільному курсі формально-алгебраїчний підхід до "вектора" ґрунтувався на прямокутних координатах точок (кінця і початку) вектора, (тобто первинним було поняття координат точки). В даному курсі розглядається інша концепція, яка приводить до узагальнення поняття площини, простору, до n-вимірного векторного простору.

При розгляданні "Векторної алгебри" на площині і в просторі, доведеться розв’язувати систему лінійних алгебраїчних рівнянь, тому ми почнемо з методу Гаусса, розв’язування таких систем. Цей метод не потребує попередніх знань.

 

1.1 Системи лінійних алгебраїчних рівнянь. Метод послідовного виключення невідомих (метод Гаусса).

 

Запишемо загальну систему лінійних алгебраїчних рівнянь. Домовимось позначати коефіцієнти при невідомих . Перший індекс вказує номер рівняння, другий індекс – номер невідомого. Невідомі (змінні) позначатимемо буквами , а вільні члени – .

Тоді систему рівнянь з невідомими можна записати у вигляді:

 

(1)

Означення 1. Розв’язком системи (1) називається упорядкована система n чисел, після підстановки яких замість відповідно, кожне рівняння перетворюється на правильну числову рівність.

Означення 2.Система (1) називається сумісною, якщо вона має принаймні один розв’язок. Якщо ж система не має жодного розв’язку, вона називається несумісною.

Сумісні системи підрозділяються також на визначені і невизначені.

Означення 3.Сумісна система називається визначеною, якщо вона має лише один розв’язок. В іншому разі сумісна система називається невизначеною.

Основні задачі теорії лінійних рівнянь такі:

1. Дослідити систему на сумісність.

2. Сумісну систему дослідити на визначеність і невизначеність.

3. Дати алгоритми розв’язування.

Суть розв’язування систем рівнянь полягає в тому, щоб звести всі рівняння до рівнянь вигляду:

(2)

або до розв’язування одного рівняння з декількома невідомими з подальшим розв’язуванням рівнянь виду (2).

Інструментом розв’язування системи є елементарні перетворення.

Означення 4.Елементарними перетвореннями системи (1):

1) перестановка двох рівнянь;

2) множення обох частин деякого рівняння на число, не рівне 0;

3) додавання до одного з рівнянь іншого рівняння, в подумках помноженого на деяке число.

Означення 5. Дві системи вигляду (1) з однаковою кількістю невідомих називаються еквівалентними, якщо вони або обидві несумісні, або, у разі сумісності, мають однакові розв’язки.

Для самостійного доведення сформулюємо теорему:

Теорема.Елементарні перетворення приводять до еквівалентних систем.

Перейдемо до дослідження системи (1) лінійних алгебраїчних рівнянь методом Гаусса.

Вважатимемо, що . Якщо це не так, цього можна досягти за рахунок або перестановки рівнянь, або за рахунок перенумерації невідомих. Зробимо такі елементарні перетворення над системою (1):

до рівняння + -ше рівняння

до рівняння + -ше рівняння

………………………………………….

до S рівняння + -ше рівняння

У результаті цих перетворень отримаємо еквівалентну систему

 

 

 

Зауваження.Могло трапитись, що у системі з’явилося рівняння:

(3)

У цьому випадку система , а тому і еквівалентна до неї , несумісна.

Могло трапитись і таке:

(4)

Це рівняння можна задовольнити будь-яким набором чисел. Тому його можна викинути з системи.

У системі вважатимемо, що . Цього можна досягти за рахунок або перестановки рівнянь, або за рахунок перенумерації невідомих. Зробимо такі елементарні перетворення над системою :

до -го рівняння + -ге рівняння

………………………………………….

до -го рівняння + -ге рівняння

Тоді отримаємо таку еквівалентну систему:

 

 

 

Продовжуючи аналогічним чином, на останньому кроці отримаємо систему:

 

 

 

 

Формально треба дослідити три випадки:

1)

У цьому випадку в останньому рівнянні невідомі оголосимо вільними у тому сенсі, що їм можна надавати будь-які значення. Тоді з останнього рівняння знайдемо , отже передостаннє рівняння і всі інші послідовно стають рівняннями виду (2) . У цьому випадку система має безліч розв’язків, тобто невизначена.

2)

Система набуває вигляду:

 

 

 

 

Звідси

 

У цьому випадку на кожному кроці послідовно отримаємо рівняння вигляду (2). Математики кажуть, що систему зведено до трикутного вигляду. Система є визначеною.

1)

Легко показати, що це неможливо. Припустимо супротивне , наприклад . Тоді останнє рівняння стає таким:

 

Ми отримали систему нееквівалентну початковій, що суперечить попередній теоремі.

Отже, метод Гаусса вирішує основні задачі в теорії лінійних рівнянь:

1. Дослідження системи на сумісність. Система буде несумісною, якщо в процесі перетворень ми отримаємо рівняння, в якому коефіцієнти при всіх невідомих рівні нулю, а вільний член - відмінний від нуля. Якщо ж ми такого рівняння не зустрінемо, то система буде сумісною.

2. Сумісна система рівнянь буде визначеною, якщо вона зводиться до трикутного вигляду, і невизначеною, якщо зводиться до вигляду , ( ).

3. Отримано алгоритм розв’язування системи алгебраїчних рівнянь методом послідовного виключення невідомих (метод Гаусса), поданий вище.

1.2 Поняття вектора, лінійні операції над векторами.

 

Розглянемо в просторі (на площині) множину всіх направлених відрізків. В цій множині можна по-різному ввести означення рівності напрямленнях відрізків і отримати три поняття вектора.

Означення 1.Два напрямлених відрізки називаються рівними, якщо:

1) вони колінеарні (знаходяться на одній або паралельних прямих);

2) мають однаковий напрямок;

3) мають однакові довжини.

Означення 2.Вільним вектором називається множина всіх рівних між собою в сенсі означення 1 напрямлених відрізків.

Введемо іншим чином означення рівності.

Означення 1'.Два напрямлених відрізки називаються рівними, якщо:

1) вони колінеарні;

2) мають однаковий напрямок;

3) знаходяться на одній прямій;

4) мають однакові довжини.

Означення 2'.Ковзним вектором називається множина всіх рівних між собою у сенсі означення 1' напрямлених відрізків.

Означення 1''. Два напрямлених відрізки називаються рівними, якщо :

1) в них рівні довжини;

2) знаходяться на одній прямій;

3) однаково направлені і мають спільний початок.

Означення 2''. Зв'язаним вектором називається множина рівних між собою в сенсі означення 1'' напрямлених відрізків.

З останнього означення випливає, що зв'язаний вектор дорівнює лише собі. В даному курсі розглядатимемо лише вільні вектори.

Над векторами вводяться дві основні лінійні операції :

1) додавання векторів;

2) множення вектора на число.

Означення 3.Сумою двох векторів і , називається вектор, що умовно позначається , початок якого знаходиться в початку вектора , кінець – у кінці вектора , за умови, що початок вектора знаходиться в кінці вектора .

Означення 4.Добутком вектора а на число к називається вектор, що умовно позначається і має такі властивості:

1)

2) , якщо , і , якщо

3) не має певного напрямку, якщо .

 

Властивості лінійних операцій (довести самостійно).

 

1. – комутативність додавання.

2. – асоціативність додавання.

3. Існує так званий нульовий вектор , тобто такий, для якого

для довільного вектора .

Зрозуміло, що початок і кінець нульового вектора збігаються, тобто він має нульову довжину, а напрямок цього вектора невизначений.

4. Для будь-якого вектора існує так званий протилежний вектор , тобто такий, що .

Вектори та мають протилежні напрямки та однакові довжини.

5. для довільного вектора .

6. – асоціативність множення на число.

7. – дистрибутивність.

8. – дистрибутивність.

1.3 Поняття лінійно залежних і лінійно незалежних систем векторів.

Означення. Лінійною комбінацією векторів називається вектор де pi- будь-які числа.

Означення 1.Система векторів називається лінійно залежною, якщо принаймні один з векторів цієї системи є лінійною комбінацією інших.

Інакше кажучи, .

Означення 2.Система векторів називається лінійно залежною, якщо існують числа , серед яких принаймні одне , що виконується рівність:

.

Теорема.При перше і друге означення лінійно залежної системи еквівалентні.

– Конец работы –

Эта тема принадлежит разделу:

Алгебра та геометрія

За час існування спеціальності quot Прикладна математика quot у Дніпропетровському національному університеті створено добре збалансований курс... Курс починається зі знайомого із шкільних курсів математики та фізики розділу... При викладанні курсу quot Алгебри та геометрія quot витримується один із дидактичних принципів від простого до...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Векторна алгебра

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Доведення.
Нехай система векторів лінійно залежна за означенням 1.Треба довести, що вона лінійно залежна у сенсі означення 2. Скористаємось означенням 1. Тоді виконується (1): . Дод

Теорему доведено.
Означення.Система векторів називається лінійно незалежною, якщо рівність виконується тоді і тільки тоді, коли . З вище доведеної теореми випливає, що якщо система лінійно

Доведення.
Необхідність. Припустимо, що вектори утворюють лінійно залежну систему. Доведемо, що вектори колінеарні. Отже один з векторів є лінійною комбінацією. Нехай це (для визначеності).

Доведення.
Необхідність. Припустимо, що вектори утворюють лінійно залежну систему. Покажемо, що вони компланарні. Якщо серед векторів системи пара колінеарних, то очевидно, що вони є компланарними. Н

Доведення.
Нехай маємо систему . Якщо серед них є трійка компланарних, то вони очевидно лінійно залежні. Нехай такої трійки немає. Візьмемо точку А і прикладемо до неї дані вектори. Побудуємо

Теорему доведено.
Зауваження. Мимохідь ми довели таке важливе твердження: будь-який вектор у просторі можна розкласти за трійкою некомпланарних векторів. 1.5 Поняття базису простору

Доведення.
Доведемо цю теорему в просторі. Розглянемо базисні вектори . Візьмемо довільний вектор . Зауважимо, що можливість розкладання доведено у теоремі 4 про геометричний зміст лінійної

Теорему доведено.
Означення.Координатами вектора у заданому базисі називаються коефіцієнти розкладання цього вектора за векторами базису. 1.6 Афінна система координат.

I. Скалярний добуток
1. Скалярна проекція вектора на вісь. Почнемо з допоміжного поняття величини напрямленого відрізку. Розглянемо вісь u і напрямлені відрізки на осі u. Означ

II. Векторний добуток
1. Поняття векторного добутку Введемо спочатку поняття 1)правої та 2)лівої трійки векторів. Означення 1. Упорядкована трійка векторів a, b, c називається п

Доведення.
Припустимо, що знайшовся такий векторний простір V, у якому декілька різних нульових елементів: і . Розглянемо суму . За означенням нульового вектора : . За означенням ну

Доведення.
Припустимо, що у деякому векторному просторі Vзнайшовся вектор , для якого є декілька різних протилежних елементів: та . Розглянемо суму . Скористуємось також асоціативністю додавання.

Доведення
Застосуємо метод математичної індукції по кількості символів n. При це очевидно: 1,2; 2,1. Зробимо індуктивне припущення: вважатимемо правильним дане твердження пр

Доведення.
При доведенні слід розглянути 2 випадки. 1. Елементи та , над якими здійснюється транспозиція, знаходяться поруч:   Зауважимо, що після транспозиції положення та від

Теорему доведено.
2.2 Підстановки n-го степеня. Означення.Підстановкою -го степеня називається бієктивне відображення -елементної множини у себе. Будемо записувати

Доведення.
Нехай, наприклад, і-ий рядок буде лінійною комбінацією s інших рядків       Застосовуючи властивість 7, ми подамо наш визначник у вигляді суми виз

Лема до теореми Лапласа. Теорема Лапласа.
Лема(про добуток мінору на його алгебраїчне доповнення ). Добуток мінору М на його алгебраїчне доповнення А складається з деяких членів визначника d, причому ці члени вход

Доведення.
Нехай задано визначник d.   Для визначеності проведемо доведення, виділивши перші k рядків. Складемо всілякі мінори k-го порядку, що знаходяться у перших k рядках. Нехай це б

Доведення.
Нехай задано довільний визначник:   Доведемо, що Для доведення побудуємо допоміжний визначник, який буде відрізнятися від визначника d лише одним рядком. &n

Доведення.
Нехай задано довільний векторний простір V і його базис . Розглянемо довільний вектор , що належить V.   1. Доведення можливості розкладання. Розглянемо систему – лі

Доведення.
Розглянемо рівність (*) з означення лінійно залежної і лінійно незалежної системи:   З'ясуємо, при яких вона виконується:   З цієї векторної рівності о

Доведення.
Для зручності доведення цієї властивості введемо символ . Нехай задано суму однотипних доданків   Застосовуючи двічі цей символ, отримаєм для  

Доведення.
Нехай найвищий порядок мінорів, що не дорівнюють нулю є число р. Це означає, що в матриці А є мінор р-того порядку, не рівний нулю. Мінори р + 1 і більш високих порядків дорівнюють нулю. Д

Теорема.
Для того, щоб визначник п - того порядку дорівнював нулю необхідно і достатньо, щоб його рядки (стовпці) утворювали лінійно залежну систему. Доведення: Необхід

Теорема.
1. Якщо ранг матриці А дорівнює рангу розширеної матриіці і це спільне значення менше n (rA=r <n), де n – кількість невідомих у системі, то система (1) є невизначеною

Доведення.
Доведемо першу властивість, а друга доводиться аналогічно. Нехай і – розв’язки системи (1). Треба визначити, чи є розв’язком системи (1). Розглянемо систему в вигля

Доведенння твердження.
Нехай Н= – множина розв’язків системи (1), – множина розв’язків системи (2). Нехай - окремий розв’язок системи (1). Розглянемо суму з будь-яким розв’язком однорідної сист

Закони множення.
1. Множення матриць, взагалі кажучі, не комутативне. Для того, щоб в цьому переконатись,досить знайти дві матриці А і В, для яких А×В ¹ В×А . А= , В= . А×В

Доведення.
Необхідність. Нехай матриця С є скалярною. Треба довести, що , " А. З того, що матриця С скалярна, вона має вигляд С = . Вище було доведено,

Доведення.
Небхідність. Нехай матриця А має псевдообернену праву. Треба довести, що матриця А – рядковоневиродженна, тобто r A = s . З того, що існує , випливає А × = Е (s&acut

Побудова множини комплексних чисел.
Відомо,що існує взаємнооднозначна відповідність між точкою прямої і дійсними числами. Але маючи дійсні числа, неможна розв¢язати навіть таке просте рівняння . Тоді спробували побудува

Полярна система координат.
Означення.Полярною системою координат називають систему координат на площині, що складається з числової прямої, яка називається полярною віссю і точки на ній, що називається полюсо

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги