рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Доведення.

Доведення. - раздел Математика, Алгебра та геометрія Розглянемо Рівність (*) З Означення Лінійно Залежної І Лінійно Незалежної Сис...

Розглянемо рівність (*) з означення лінійно залежної і лінійно незалежної системи:

 

З'ясуємо, при яких вона виконується:

 

З цієї векторної рівності отримаємо п-числових різностей.

 

 

 

Отримали систему n-рівнянь з s-невідомими. Ця система завжди сумісна тому що вона має принаймні один нульовий розв'язок.

Але за допомогою елементарних перетворень вона зводиться до кінцевого вигляду, де кількість рівнянь менша за кількість невідомих.

Повертаючись до рівності (*) приходимо до висновку що рівність (*) виконується коли принаймі одне з -тих не дорівнює нулю, тому -лінійно залежні.

Наслідок.Будь-яка система з n + 1 вектора з п-компонентами є лінійно-залежна. Це негайно випливає, якщо з покласти .

З цього випливає, що вимірність арифметичного простору не більш ніж: п. Для того, щоб довести, що вимірність дорівнює n треба знайти принаймні одну лінійно незалежну систему векторів, що містить n-векторів.

Такою системою векторів є наприклад:

 

Доведемо, що вони лінійно незалежні. Складемо рівність (*).

(*)

З цього випливає

Тобто (*) виконується лише один раз при , тому система векторів є лінійно незалежною.

Отже, ми довели, що арифметичний простір є n-вимірним (n – кількість компонент вектора).

Зауваження. Поняття вимірності лінійного простору можна ввести і за таким означенням.

Означення. Вимірністю лінійного простору називається кількість векторів, що входять до базису.

Для того щоб це означення було корректним треба було б довести, що усі базиси даного простору містять однакову кількість векторів (насправді, це так).

Позначимо n-вимірний довільний векторний простір через Vn.

Введемо поняття підпростору даного простору Vn.

Означення. Підмножина лінійного простору Vn називається підпростором даного простору, якщо є само простором відносно операцій, визначених в Vn.

Безпосередньо з означення лінійного простору випливає, що для того щоб переконатися, що підмножина є підпростором, треба перевірити виконання десятьох умов. Дві з них стосуються визначеності операцій (додавання та множення на число), 8 умов – аксіоми, і описують властивості цих операцій. Насправді, треба перевірити виконання лише двох умов, а саме, визначеність операцій в .

Доведемо це. Нехай в визначені ті ж операції що і в Vn, тобто:

Якщо ,то

а) ;

б) .

Зрозуміло, оскільки всі елементи множини належать Vn, то з цього негайно випливає виконання аксіом 1), 2), 5), 6), 7), 8).

Доведемо, що виконується умова – аксіома 3), 4), тобто що . Наспправді, нехай , оскільки , то при , а при .

3.2 Поняття рангу системи векторів.

Нехай задано систему векторів довільного простору:

(1)

Означення.Максимальною лінійно незалежною підсистемою даної системи векторів називається така її лінійно незалежна підсистема приєднання до якої будь-якого вектора цієї ж системи приводить до лінійно залежної системи.

Означення.Рангом системи векторів (1) називається кількість векторів, що входить до максимальної лінійно-незалежної її підсистеми.

ЗауваженняДля того, щоб означення вимірності лінійного простору і означення рангу системи векторів було коректним, треба було б довести, що кількість векторів, що входять в будь-яку максимальну лінійно незалежну систему простору (а для рангу – будь-яку максимально-лінійно незалежної підсистеми) є однаковим.

Для подальшого потрібне таке означення.

Означення 1.Говоритимемо, що система векторів (1) лінійно виражається через систему векторів (2) , якщо кожний вектор системи (1) є лінійною комбінацією векторів системи (2):

(3)

Означення 2.Системи векторів (1) і (2) називаються еквівалентними, якщо кожна з них лінійно виражається через другу

Властивість (транзитивності)

Якщо система векторів (1) лінійно виражається через систему векторів (2), а система (2) через систему (3), тоді система (1) лінійно виражається через (3).

– Конец работы –

Эта тема принадлежит разделу:

Алгебра та геометрія

За час існування спеціальності quot Прикладна математика quot у Дніпропетровському національному університеті створено добре збалансований курс... Курс починається зі знайомого із шкільних курсів математики та фізики розділу... При викладанні курсу quot Алгебри та геометрія quot витримується один із дидактичних принципів від простого до...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Доведення.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Векторна алгебра
  Одним з важливих розділів даного курсу є загальна теорія лінійних алгебраїчних рівнянь. Ця теорія ґрунтується на понятті рангу системи векторів, арифметичному просторі. Тому поперед

Доведення.
Нехай система векторів лінійно залежна за означенням 1.Треба довести, що вона лінійно залежна у сенсі означення 2. Скористаємось означенням 1. Тоді виконується (1): . Дод

Теорему доведено.
Означення.Система векторів називається лінійно незалежною, якщо рівність виконується тоді і тільки тоді, коли . З вище доведеної теореми випливає, що якщо система лінійно

Доведення.
Необхідність. Припустимо, що вектори утворюють лінійно залежну систему. Доведемо, що вектори колінеарні. Отже один з векторів є лінійною комбінацією. Нехай це (для визначеності).

Доведення.
Необхідність. Припустимо, що вектори утворюють лінійно залежну систему. Покажемо, що вони компланарні. Якщо серед векторів системи пара колінеарних, то очевидно, що вони є компланарними. Н

Доведення.
Нехай маємо систему . Якщо серед них є трійка компланарних, то вони очевидно лінійно залежні. Нехай такої трійки немає. Візьмемо точку А і прикладемо до неї дані вектори. Побудуємо

Теорему доведено.
Зауваження. Мимохідь ми довели таке важливе твердження: будь-який вектор у просторі можна розкласти за трійкою некомпланарних векторів. 1.5 Поняття базису простору

Доведення.
Доведемо цю теорему в просторі. Розглянемо базисні вектори . Візьмемо довільний вектор . Зауважимо, що можливість розкладання доведено у теоремі 4 про геометричний зміст лінійної

Теорему доведено.
Означення.Координатами вектора у заданому базисі називаються коефіцієнти розкладання цього вектора за векторами базису. 1.6 Афінна система координат.

I. Скалярний добуток
1. Скалярна проекція вектора на вісь. Почнемо з допоміжного поняття величини напрямленого відрізку. Розглянемо вісь u і напрямлені відрізки на осі u. Означ

II. Векторний добуток
1. Поняття векторного добутку Введемо спочатку поняття 1)правої та 2)лівої трійки векторів. Означення 1. Упорядкована трійка векторів a, b, c називається п

Доведення.
Припустимо, що знайшовся такий векторний простір V, у якому декілька різних нульових елементів: і . Розглянемо суму . За означенням нульового вектора : . За означенням ну

Доведення.
Припустимо, що у деякому векторному просторі Vзнайшовся вектор , для якого є декілька різних протилежних елементів: та . Розглянемо суму . Скористуємось також асоціативністю додавання.

Доведення
Застосуємо метод математичної індукції по кількості символів n. При це очевидно: 1,2; 2,1. Зробимо індуктивне припущення: вважатимемо правильним дане твердження пр

Доведення.
При доведенні слід розглянути 2 випадки. 1. Елементи та , над якими здійснюється транспозиція, знаходяться поруч:   Зауважимо, що після транспозиції положення та від

Теорему доведено.
2.2 Підстановки n-го степеня. Означення.Підстановкою -го степеня називається бієктивне відображення -елементної множини у себе. Будемо записувати

Доведення.
Нехай, наприклад, і-ий рядок буде лінійною комбінацією s інших рядків       Застосовуючи властивість 7, ми подамо наш визначник у вигляді суми виз

Лема до теореми Лапласа. Теорема Лапласа.
Лема(про добуток мінору на його алгебраїчне доповнення ). Добуток мінору М на його алгебраїчне доповнення А складається з деяких членів визначника d, причому ці члени вход

Доведення.
Нехай задано визначник d.   Для визначеності проведемо доведення, виділивши перші k рядків. Складемо всілякі мінори k-го порядку, що знаходяться у перших k рядках. Нехай це б

Доведення.
Нехай задано довільний визначник:   Доведемо, що Для доведення побудуємо допоміжний визначник, який буде відрізнятися від визначника d лише одним рядком. &n

Доведення.
Нехай задано довільний векторний простір V і його базис . Розглянемо довільний вектор , що належить V.   1. Доведення можливості розкладання. Розглянемо систему – лі

Доведення.
Для зручності доведення цієї властивості введемо символ . Нехай задано суму однотипних доданків   Застосовуючи двічі цей символ, отримаєм для  

Доведення.
Нехай найвищий порядок мінорів, що не дорівнюють нулю є число р. Це означає, що в матриці А є мінор р-того порядку, не рівний нулю. Мінори р + 1 і більш високих порядків дорівнюють нулю. Д

Теорема.
Для того, щоб визначник п - того порядку дорівнював нулю необхідно і достатньо, щоб його рядки (стовпці) утворювали лінійно залежну систему. Доведення: Необхід

Теорема.
1. Якщо ранг матриці А дорівнює рангу розширеної матриіці і це спільне значення менше n (rA=r <n), де n – кількість невідомих у системі, то система (1) є невизначеною

Доведення.
Доведемо першу властивість, а друга доводиться аналогічно. Нехай і – розв’язки системи (1). Треба визначити, чи є розв’язком системи (1). Розглянемо систему в вигля

Доведенння твердження.
Нехай Н= – множина розв’язків системи (1), – множина розв’язків системи (2). Нехай - окремий розв’язок системи (1). Розглянемо суму з будь-яким розв’язком однорідної сист

Закони множення.
1. Множення матриць, взагалі кажучі, не комутативне. Для того, щоб в цьому переконатись,досить знайти дві матриці А і В, для яких А×В ¹ В×А . А= , В= . А×В

Доведення.
Необхідність. Нехай матриця С є скалярною. Треба довести, що , " А. З того, що матриця С скалярна, вона має вигляд С = . Вище було доведено,

Доведення.
Небхідність. Нехай матриця А має псевдообернену праву. Треба довести, що матриця А – рядковоневиродженна, тобто r A = s . З того, що існує , випливає А × = Е (s&acut

Побудова множини комплексних чисел.
Відомо,що існує взаємнооднозначна відповідність між точкою прямої і дійсними числами. Але маючи дійсні числа, неможна розв¢язати навіть таке просте рівняння . Тоді спробували побудува

Полярна система координат.
Означення.Полярною системою координат називають систему координат на площині, що складається з числової прямої, яка називається полярною віссю і точки на ній, що називається полюсо

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги