рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Доведення.

Доведення. - раздел Математика, Алгебра та геометрія Доведемо Першу Властивість, А Друга Доводиться Аналогічно. Нехай І ...

Доведемо першу властивість, а друга доводиться аналогічно.

Нехай і розв’язки системи (1). Треба визначити, чи є розв’язком системи (1).

Розглянемо систему в вигляді (1’). Тоді з означення розв’язку, маємо системи правильних числових рівностей:

 

(2)

(3)

 

Підставимо в ліву частину системи (1’) – замість .

 

 

 

Отже є розв’язком системи (1).

З доведених властивостей випливає.

Наслідок. Будь-яка лінійна комбінація будь-яких розв’язків однорідної системи є також розв’язком цієї системи.

Введемо важливе для однорідної системи поняття фундаментальної системи розв’язків.

Означення.Максимальна лінійно незалежна система розв’язків однорідної системи рівнянь називається її фундаментальною системою.

З цього означення випливає, що фундаментальна система розв’язків задовольняє дві умови:

1) розв’язки, що входять до фундаментальної системи – лінійно незалежні;

2) будь-який інший розв’язок є лінійною комбінацією цих розв’язків.

З’ясуємо скільки розв’язків входить до фундаментальної системи.

Розв’язок системи лінійних алгебраїчних рівнянь можна розглядати як вектор n-вимірного арифметичного простору. Раніше було доведено, що в n-вимірному арифметичному просторі найбільша кількість лінійно-незалежних векторів містить n-векторів. Отже маємо попередній висновок: фундаментальна система розв’язків містить не більше n розв’язків. Більш точну інформацію містить наступна теорема.

Теорема. (про фундаментальну систему розв’язків)

Якщо ранг p матриці A менше кількості невідомих n, то однорідна система рівнянь має фундаментальну систему розв’язків, причому кількість розв’язків, що входить до фундаментальної системи дорівнює n-p.

Доведення.Нехай задано однорідну систему рівнянь

 

(1)

 

Нехай ранг матриці

 

= p.

 

Тоді кількість фундаментальних розв’язків (n-p). З того , що ранг rA=p<n випливає , що система (1) невизначена, тобто має безліч розв’язків.

Запишимо всі розв’язки в вигляді (**)

, (**)

(зробивши попередньо для системи (1) припущення, при яких було отримано (**)).

Виберемо з цієї нескінченної множини розв’язків, (n-р) розв’язков за таким правилом :

1. Надамо вільним невідомим значення

Підставимо ці значення в формулу (**) , отримаємо значення для

.

2. Надамо вільним невідомим другий раз інші значення . Підставимо в (**), отримаємо другий розв’язок.

….

Надамо вільним невідомим (n-p) раз значення .

Підставимо їх в (**), отримаємо

 

Отже ми отримали систему розв’язків:

1-ий розв’язок ( )

2-ий розв’язок ( ) (2)

( ) розв’язок ( )

Зауважимо, що вільні невідомі в розв’язках (2) вибирались будь-як, але за однією умовою

(3)

Доведемо, що система розв’язків (2) є фундаментальною.

Для цього ми повинні довести, що :

1. Розв’язки (2) лінійно незалежні.

2. Приєднання до (2) будь-якого розв’язку системи приводить до лінійно залежної системи.

Для доведення першого пункту розглянемо матрицю К :

 

 

 

1. Доведемо rK=n-p. Це випливає з того що в цій матриці за умовою (3) є мінор порядку (n – p), що не дорівнює нулю. Мінорів більш високого порядку не можна скласти. Тоді з теореми про ранг матриці rK = n – p.

З того, що rK = n – p , використовуючи другий наслідок з теореми про ранг випливає, що в матриці К є лише (n – p) лінійно незалежних рядків. А в рядках записано розв’язки (2), тобто вони лінійно незалежні.

2. Для доведення другого пункту розглянемо довільний розв’язок системи (1) . Приєднаємо його до системи розв’язків (2) і доведемо, що отримана система розв’язків вже лінійно залежна. Для цього утворимо матрицю :

.

 

Доведемо, що ранг і цієї матриці дорівнює r = n – p.

Доведемо, що в цій матриці лише (n – p) лінійно незалежних стовпців. Саме з цього тоді випливатиме, що r = n – p. З того, що мінор в правому верхньому куту не дорівнює нулю, випливає, що останнні ( n – p ) стовпців матриці лінійно незалежні. Доведення цього факту таке ж саме як і в першій частині про ранг.

Доведемо, що перший, другий, і т.д. р-ий стовпчик матриці є лінійною комбінацією останніх ( n – p ) стовпців. Це твердження випливає з формули (**).

Насправді, в першому стовпчику матриці записано значення для x1, в другому дляx2, і т.д., в n-ому стовпчику – для xn. Зформули ж (**) випливає, що x1,…,xpєлінійною комбінацією xp+1,…,xn.

Тобто в матриці – лінійно незалежними є лише останні (n-p)стовпців. Таким чином максимальна лінійно незалежна система розв’язків (ФСР) складається з (n-p) розв’язків.

Теорему доведено.

Зауваження.Якщо rА = р = n , то в цьому випадку система визначена, має один тривіальний розв’язок, а система з одного нульововго вектора лінійно залежна, тому фундаментальної системи розв’язків немає.

Розглянемо множину розв’язків однородної системи з точки зору векторного простору. Множина розв’язків однорідної системи є підмножиною n-вимірного арифметичного простру. Більш того з властивостей розв’язків однорідної системи випливає, що в цій підмножині визначені операції додавання векторів і множення вектора на число. Тоді як випливає з попереднього множина усіх розв’язків однорідної системи є підпростором арифметичного простору. Базисом цього підпростору є фундаментальна система розв’язків. З тереми про фундаментальну систему випливає, що вимірність цього підпростору дорівнює n-r (n – кількість невідомих, r – ранг матриці системи).

4.4 Зв’язок між розв’язком неоднорідної і відповідної однорідної системи рівнянь.

Нехай задано неоднорідну систему

, (1)

Означення. Відповідною однорідною системою називається система

, (2)

з тими ж самими коефіцієнтами .

Звя’язок між розв’язками системи (1) та (2) описується наступними теоремами.

Теорема 1. Сума розв’язків неоднорідної і відповідної однорідної системи лінійних алгебраїчних рівнянь є розв’язком неоднорідної системи .

Теорема 2.Різниця двох розв’язків неоднорідної системи є розв’язком відповідної однорідної системи.

Доведення теореми 1. Нехай ( ) – розв’язок системи (1), ( ) – розв’язок системи (2). Треба довести , що - розв’язок системи (1) .

За означенням розв’язку маємо систему правильних числових рівностей

, ( ) (3)

, ( ) (4)

Підставимо в ліву частину системи (1) замість .

 

( )

Перша властивість доведена.

 

Доведення теореми 2. Нехай ( ) , ( ) – розв’язки системи (1). Розглянемо упорядкований набір . Ми повинні довести, що це розв’язок системи (2) .

За означенням розв’язку маємо системи правильних числових рівностей:

, ( ), (3)

, ( ). (3’)

Підставимо в ліву частину рівнянь системи (2) замість числа відповідно і обчислимо її.

.

Таким чином , одержуємо правильних числових рівностей.

Твердження.З цих двох теорем випливає такий алгоритм розв’язування неоднорідної системи рівнянь : множину всіх розв’язків можна одержати додавання до кожного розв’язку множини розв’язків однорідної системи одного розв’язку (окремого) неоднорідної системи.

– Конец работы –

Эта тема принадлежит разделу:

Алгебра та геометрія

За час існування спеціальності quot Прикладна математика quot у Дніпропетровському національному університеті створено добре збалансований курс... Курс починається зі знайомого із шкільних курсів математики та фізики розділу... При викладанні курсу quot Алгебри та геометрія quot витримується один із дидактичних принципів від простого до...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Доведення.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Векторна алгебра
  Одним з важливих розділів даного курсу є загальна теорія лінійних алгебраїчних рівнянь. Ця теорія ґрунтується на понятті рангу системи векторів, арифметичному просторі. Тому поперед

Доведення.
Нехай система векторів лінійно залежна за означенням 1.Треба довести, що вона лінійно залежна у сенсі означення 2. Скористаємось означенням 1. Тоді виконується (1): . Дод

Теорему доведено.
Означення.Система векторів називається лінійно незалежною, якщо рівність виконується тоді і тільки тоді, коли . З вище доведеної теореми випливає, що якщо система лінійно

Доведення.
Необхідність. Припустимо, що вектори утворюють лінійно залежну систему. Доведемо, що вектори колінеарні. Отже один з векторів є лінійною комбінацією. Нехай це (для визначеності).

Доведення.
Необхідність. Припустимо, що вектори утворюють лінійно залежну систему. Покажемо, що вони компланарні. Якщо серед векторів системи пара колінеарних, то очевидно, що вони є компланарними. Н

Доведення.
Нехай маємо систему . Якщо серед них є трійка компланарних, то вони очевидно лінійно залежні. Нехай такої трійки немає. Візьмемо точку А і прикладемо до неї дані вектори. Побудуємо

Теорему доведено.
Зауваження. Мимохідь ми довели таке важливе твердження: будь-який вектор у просторі можна розкласти за трійкою некомпланарних векторів. 1.5 Поняття базису простору

Доведення.
Доведемо цю теорему в просторі. Розглянемо базисні вектори . Візьмемо довільний вектор . Зауважимо, що можливість розкладання доведено у теоремі 4 про геометричний зміст лінійної

Теорему доведено.
Означення.Координатами вектора у заданому базисі називаються коефіцієнти розкладання цього вектора за векторами базису. 1.6 Афінна система координат.

I. Скалярний добуток
1. Скалярна проекція вектора на вісь. Почнемо з допоміжного поняття величини напрямленого відрізку. Розглянемо вісь u і напрямлені відрізки на осі u. Означ

II. Векторний добуток
1. Поняття векторного добутку Введемо спочатку поняття 1)правої та 2)лівої трійки векторів. Означення 1. Упорядкована трійка векторів a, b, c називається п

Доведення.
Припустимо, що знайшовся такий векторний простір V, у якому декілька різних нульових елементів: і . Розглянемо суму . За означенням нульового вектора : . За означенням ну

Доведення.
Припустимо, що у деякому векторному просторі Vзнайшовся вектор , для якого є декілька різних протилежних елементів: та . Розглянемо суму . Скористуємось також асоціативністю додавання.

Доведення
Застосуємо метод математичної індукції по кількості символів n. При це очевидно: 1,2; 2,1. Зробимо індуктивне припущення: вважатимемо правильним дане твердження пр

Доведення.
При доведенні слід розглянути 2 випадки. 1. Елементи та , над якими здійснюється транспозиція, знаходяться поруч:   Зауважимо, що після транспозиції положення та від

Теорему доведено.
2.2 Підстановки n-го степеня. Означення.Підстановкою -го степеня називається бієктивне відображення -елементної множини у себе. Будемо записувати

Доведення.
Нехай, наприклад, і-ий рядок буде лінійною комбінацією s інших рядків       Застосовуючи властивість 7, ми подамо наш визначник у вигляді суми виз

Лема до теореми Лапласа. Теорема Лапласа.
Лема(про добуток мінору на його алгебраїчне доповнення ). Добуток мінору М на його алгебраїчне доповнення А складається з деяких членів визначника d, причому ці члени вход

Доведення.
Нехай задано визначник d.   Для визначеності проведемо доведення, виділивши перші k рядків. Складемо всілякі мінори k-го порядку, що знаходяться у перших k рядках. Нехай це б

Доведення.
Нехай задано довільний визначник:   Доведемо, що Для доведення побудуємо допоміжний визначник, який буде відрізнятися від визначника d лише одним рядком. &n

Доведення.
Нехай задано довільний векторний простір V і його базис . Розглянемо довільний вектор , що належить V.   1. Доведення можливості розкладання. Розглянемо систему – лі

Доведення.
Розглянемо рівність (*) з означення лінійно залежної і лінійно незалежної системи:   З'ясуємо, при яких вона виконується:   З цієї векторної рівності о

Доведення.
Для зручності доведення цієї властивості введемо символ . Нехай задано суму однотипних доданків   Застосовуючи двічі цей символ, отримаєм для  

Доведення.
Нехай найвищий порядок мінорів, що не дорівнюють нулю є число р. Це означає, що в матриці А є мінор р-того порядку, не рівний нулю. Мінори р + 1 і більш високих порядків дорівнюють нулю. Д

Теорема.
Для того, щоб визначник п - того порядку дорівнював нулю необхідно і достатньо, щоб його рядки (стовпці) утворювали лінійно залежну систему. Доведення: Необхід

Теорема.
1. Якщо ранг матриці А дорівнює рангу розширеної матриіці і це спільне значення менше n (rA=r <n), де n – кількість невідомих у системі, то система (1) є невизначеною

Доведенння твердження.
Нехай Н= – множина розв’язків системи (1), – множина розв’язків системи (2). Нехай - окремий розв’язок системи (1). Розглянемо суму з будь-яким розв’язком однорідної сист

Закони множення.
1. Множення матриць, взагалі кажучі, не комутативне. Для того, щоб в цьому переконатись,досить знайти дві матриці А і В, для яких А×В ¹ В×А . А= , В= . А×В

Доведення.
Необхідність. Нехай матриця С є скалярною. Треба довести, що , " А. З того, що матриця С скалярна, вона має вигляд С = . Вище було доведено,

Доведення.
Небхідність. Нехай матриця А має псевдообернену праву. Треба довести, що матриця А – рядковоневиродженна, тобто r A = s . З того, що існує , випливає А × = Е (s&acut

Побудова множини комплексних чисел.
Відомо,що існує взаємнооднозначна відповідність між точкою прямої і дійсними числами. Але маючи дійсні числа, неможна розв¢язати навіть таке просте рівняння . Тоді спробували побудува

Полярна система координат.
Означення.Полярною системою координат називають систему координат на площині, що складається з числової прямої, яка називається полярною віссю і точки на ній, що називається полюсо

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги