Доведення.

Необхідність. Нехай матриця С є скалярною. Треба довести, що , " А. З того, що матриця С скалярна, вона має вигляд

С = .

Вище було доведено, що така матриця комутує з будь-якою матрицею А. Таким чином, необхідність доведена.

Достатність. Нехай деяка матриця С загального вигляду

С = ,

комутує з будь-якою матрицею А . Треба довести, що матриця С – скалярна матриця, тобто , , якщо i ¹ j .

З того, що для будь-якої матриці А, випливає .

 

 

(1)

 

.

(2)

Матриці (1), (2) за умовою теореми рівні, тому що на однакових місцях повинні знаходитись рівні елементи. Порівняємо елементи i-тих рядків ицх матриць.

0 = , 0 = , … , , 0 = , j = 1,2,…n.

Таким чином, ми одержали, що матриця С має діагональні елементи рівними, а елементи позадіагональні є нульовими, тобто матриця С – скалярна матриця.

 

5.4 Скалярні матриці.

Означення.Скалярною матрицею називається матриця вигляду

.

До класу скалярних матриць належить одинична матриця, а також нульова.

Позначимо k × Е = .

Доведемо, що кЕ комутує з будь-якою матрицею

(к Е) А = А (к Е ) , А .

Безпосереднім множенням матриць, переконуємося

1) ( к Е ) А = .

2) А ( к Е ) = .

 

Звідси випливає, що скалярна матриця комутує в добутку з будь-якою матрицею А. Насправді справедливе і обернене. А тому має місце така теорема.

Теорема.Для того, щоб матриця була скалярною, необхідно і достатньо, щоб вона комутувала з будь-якою матрицею .

 

5.5 Операції над прямокутними матрицями.

Розглянемо прямокутні матриці. З’ясуємо за яких умов операції над прямокутними матрицями можна здійснювати за тими ж правилами, що й над квадратними.

Почнемо з прикладів :

- таке множення не можливо.

,

, .

 

Проаналізувавши наведені приклади, приходимо до такого правила множення прямокутних матриць.

Правило:Дві прямокутні матриці можна перемножити, якщо кількість елементів в рядку першої матриці збігається з кількістю елементів в стовпці другої матриці, тобто кількість столбців першої матриці дорівнює кількості рядків другої матриці, причому добуток має стільки рядків, скільки їх в першій матриці, і стільки стовпців, скільки їх в другій матриці.

 

Властивості прямокутних матриць.

1. Множення прямокутних матриць не комутативне.

2. Множення трьох матриць (якщо їх можна перемножити), підпорядковується асоцітивному закону, тобто (АВ)С = А(ВС) .

Доведення таке саме, як для квадратних матриць.

 

Розглянемо тепер і множення прямокутних матриць на число.

Аналізуючи операцію додавання квадратних матриць, приходимо до висновку, що додавати можна матриці однакових розмірів. А множити на число можна будь-яку матрицю.

Так само, як для квадратних матриць можна довести, що множина всіх прямокутних матриць одного розміру (s´n) є векторним простором відносно операцій додавання і множення матриці на число. Причому, арифметичним простором вимірності (s´n) .

Так само, як для квадратних матриць, можна вказати базіс простору. Ці матриці мають нульові єлементи, крім одного. Цей єлемент є 1. Таких матриць (s´n).

5.6 Псевдообернені матриці.

Почнемо з інформації про ранг добутку матриць, яка виявиться корисною при з’ясуванні умов існування псевдообернених матриць.

Відмітемо без доведення теорему.

Теорема. Ранг добутку матриць А і В не перевищує ранг матриці А і ранг матриці В.

Для подальшого важливим є наслідок з наведеної теореми.

Наслідок. Ранг добутку двох матриць А і В, з яких одна, наприклад В , невироджена, дорівнює рангу матриці А.

Доведення. Нехай С = А × В, det B ¹ 0. (1)

Треба довести, що r C = r A.

З теореми випливає, що

r C £ r A , (2)

з того, що det B¹0, випливає, що існує матриця . П омножимо обидві частини рівності на : С × = А × B × . З того, що множення має властивість асоціативності, матимемо, С × = А × Е=А. Застосуємо ще раз доведену теорему.

rA£ rC (3)

З (2) та (3) випливає, що r А = r С.

 

Нехай задано прямокутну матрицю А=( ) , розміру s´n,

 

Означення.Матриця, що умовно позначається , називається псевдооберненою лівою, якщо вона задовольняє умові:

×А=Е.

Аналогічно вводиться поняття псевдооберненої правої матриці, якщо вона задовольняє умові:

А× =Е.

Для того, щоб з¢ясувати умови існування псевдообернених матриць, треба розподілити всі прямокутні матриці на два класи: горизонтальні та вертикальні.

Означення.Матриця називається горизонтальною, якщо кількість рядків в ній менша за кількість стовпців.

Матриця називається вертикальною, якщо кількість стовпців в ній менша за кількість рядків.

Теорема 1. Жодна горизонтальна матриця немає псевдооберненої лівої.

Доведення.Нехай матриця А – горизонтальна матриця, тобто s<n. Тоді за означенням виконується рівність × А = Е . В матриці Е повинно бути стільки стовпців, скільки в матриці А, тобто квадратна матриця Е має розмір n´n . Ранг матриці Е дорівнює n, тому що в ній є мінор n-го порядку, що не дорівнює нулю. З іншого боку, застосуємо теорему про ранг добутку двох матриць.

n =r E £ r A £ s , n £ s, що суперечить умові. Так само може бути доведено теорему 1¢ .

Теорема 1¢.Жодна вертикальна матриця не має оберненої правої.

Для того, щоб з¢ясувати, за яких умов горизонтальна матриця має праву, а вертикальна – псевдообернену ліву, треба ввести поняття рядковоневиродженної і стовпцевоневиродженної матриць.

 

Означення.Матриця називається рядкововиродженною, якщо її стовпці утворюють лінійнонезалежну систему.

Матриця називається стовпцовоневиродженною, якщо її стовпці утворюют лінійнонезалежну систему.

З цього означення випливає, що горизонтальна матриця не може бути стовпцевоневиродженною, а вертикальна – рядковоневиродженною.

Теорема 2. Для того, щоб матриця мала псевдообернену праву, необхідно і достатньо, щоб вона була рядкововиродженною.