рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Свойства определителей.

Свойства определителей. - раздел Математика, ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Так Как Определитель Не Меняется При Транспонировании Матрицы, Свойства, Прив...

Так как определитель не меняется при транспонировании матрицы, свойства, приведенные ниже для строк, справедливы и для столбцов.

1. Определитель, имеющий нулевую строку равен нулю.

2. Определитель, у которого две строки равны или пропорциональны, равен нулю.

3. Общий множитель строки можно выносить за знак определителя.

4. Перестановка двух строк определителя изменяет знак определителя.

5. Если строку определителя умножить на постоянное число и прибавить к другой строке, то определитель не изменится.

6. Сумма произведений элементов строки на соответствующие алгебраические дополнения к элементам другой строки равна нулю.

7. Определитель можно представить в виде суммы определителей согласно формуле

.

8. Определитель .

То есть определитель треугольной матрицы равен произведению ее диагональных элементов.

9. Определитель произведения квадратных матриц равен произведению определителей этих матриц: .

►Пример 2. Вычислить определители:

 

1),2),3), 4) , 5) ,

6) , 7) .

 

Решение.

1) Определитель вычислим по формуле (1) .

2) Определитель вычислим по формуле (2) и по формулам (3,4) . По формуле (2)

.

Для вычисления по формуле (3) возьмем вторую строку (выбор строки произволен) и вычислим миноры и алгебраические дополнения к элементам этой строки

.

.

По формуле (3) имеем .

3) Заметим, что в определителе во втором столбце имеется два нуля. Воспользуемся формулой (4) и выберем для разложения второй столбец

.

4) Заметим, что первый столбец определителя имеет общий множитель. Вынесем этот множитель за знак определителя

.

 

 

5) Определитель имеет треугольный вид, следовательно,

.

6) Определитель имеет пятый порядок. Разложение по элементам строки (столбца) приводит к четырем определителям четвертого порядка, что в свою очередь дает для каждого из них четыре определителя третьего порядка. Многовато! Воспользуемся пятым свойством определителей. Умножим первую строку на минус единицу и прибавим ее ко второй строке. Затем последовательно первую строку умножим на минус два и прибавим к третьей строке; первую строку умножим на минус три и прибавим к четвертой строке: первую строку умножим на минус четыре и прибавим ее к четвертой строке. Замечаем, что первая строка при наших действиях остается неизменной, поэтому все операции можно сделать за один шаг перехода. Договоримся условно записывать сделанные операции над равенством перехода. Получаем

7) Воспользуемся формулой (3), а определители третьего порядка вычислим по схеме Саррюса:

. ◄

 

►Пример 3. Решить уравнение .

Решение.

По формуле (1) раскроем определитель, а затем решим уравнение

. ◄

 

►Пример 4. Найти определитель .

Решение.

Все столбцы, начиная со второго, прибавим к первому столбцу, вынесем общий множитель из вновь полученного первого столбца, а затем первую строку вычтем из всех остальных

 

 

 

– Конец работы –

Эта тема принадлежит разделу:

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ... Введение...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Свойства определителей.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Матрицы и действия с матрицами
  Матрицей размера называется прямоугольная таблица чисел, содержащая

Упражнения.
1. Даны матрицы: Выполнить действия: а)

Определители
  Определителем (детерминантом) n-го порядка называется числовая характеристика квадратной матрицы A размера

Упражнения.
  1. Вычислить определители: а) ; б)

Обратная матрица. Решение матричных уравнений
  Матрица называется обратной к квадратной матрице

Упражнения.
1. Для заданных матриц найти обратную матрицу: а) ; б)

Ранг матрицы
  Рангом матрицы (обозначение:

Теорема Крамера.
Пусть дана система, в которой число уравнений совпадает с числом неизвестных (10) Е

Упражнения.
Решить системы по формулам Крамера: 1) 2)

Решение систем с помощью обратной матрицы
  Система из уравнений с

Упражнения.
Найти решение систем с помощью обратной матрицы:   а) б)

Теорема Кронекера-Капелли.
Для совместности системы линейных уравнений необходимо и достаточно, чтобы ранг ее основной матрицы (

Упражнения.
Исследовать и решить системы уравнений: 1. Ответ:

Однородные системы
  Система однородных уравнений всегда совместна. Если ранг матрицы коэффициентов равен числу неизвестных, то система имеет единственное нулевое (тривиальное) решение.

Упражнения.
Решить системы: 1) 2)

Собственные значения и собственные векторы матрицы
  Комплексное число называется собственным числом квадратной матрицы

Упражнения.
Найти собственные числа, и для действительных собственных чисел найти собственные векторы матриц: 1)

Действия с матрицами на компьютере в EXCEL
  Рассмотрим применение табличного процессора EXCEL для работы с матрицами.   Процессор EXCEL работает с числовыми матрицами и может осуществлять следующие опер

Сложение матриц.
Рис.3   В ячейки

Умножение матрицы на число.
Рис.4 В ячейки

Вычисление определителя, транспонирование, нахождение обратной матрицы.
Перечисленные операции проводятся с помощью соответствующих встроенных функций. При выполнении операций транспонирования, умножения матриц, нахождения обратной матрицы необходимо предварите

Вычисление ранга матрицы.
Будем последовательно получать нули в первом, втором и т.д. столбцах ниже диагональных элементов.

Решение систем линейных уравнений в EXCEL
  Сначала рассмотрим решение системы линейных уравнений методом Крамера. Для этого используем уже решенный пример 11.  

Ввод матрицы.
In[4]:= m1 = {{2, -5, 4}, {3, -1, 8}, {2, 6, 1}, {-1, 3, 4}} Out[4]= {{2, -5, 4}, {3, -1, 8}, {2, 6, 1}, {-1, 3, 4}} Имя матрицы m1. Сама матрица вводится построчно с использование фиг

Определение ранга матрицы.
In[18]:= MatrixRank[m1] Out[18]= 3 Решение систем линейных уравнений. In[17]:= Solve[{2 x + y - z + 2 t == 12, -x + 2 y + 4 z + 3 t == 4, 2 x + y + 4 z -

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги