рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Подпространства линейных пространств

Подпространства линейных пространств - раздел Математика, ЛИНЕЙНАЯ АЛГЕБРА Определение 22. Подпространством Линейного Пространства ...

Определение 22. Подпространством линейного пространства называется такое множество его элементов, которое само является линейным пространством над тем же полем.

Теорема 14. Непустое множество элементов В Ì L является линейным подпространством в L тогда и только тогда, когда для любых двух элементов в1 и в2 из В и любого lÎ Р выполняются условия: в1 + в2 Î В и l×в1 Î В.

Доказательство. Þ Если В – линейное подпространство, то условия теоремы, очевидно, выполнены.

Ü Если условия теоремы выполняются, то возьмём любой элемент в Î В. Тогда (–1)×в = –в принадлежит В. Итак, в В для каждого элемента есть противоположный. Но тогда и в + (–в) тоже принадлежит В, т.е. 0 Î В. Остальные требования определения 14 выполняются очевидно. Следовательно, В – линейное пространство над тем же полем, что и L.

Примеры линейных подпространств.

1. Пусть а1, а2, … , ак – любая система векторов из L. Множество всех линейных комбинаций этих векторов (т.е. элементов вида a1а1 + a2а2 + … + aкак) называется линейной оболочкой данной системы векторов и обозначается áа1, а2, … , акñ, или L(а1, а2, … , ак). Линейная оболочка любой конечной системы векторов из L является линейным подпространством в L.. Одним из базисов линейной оболочки является максимальная линейно независимая подсистема системы а1, а2, … , ак. Следовательно, размерность линейной оболочки равна рангу этой системы.

2. Множество многочленов степени не выше к (к £ n) с коэффициентами из поля Р является линейным подпространством в пространстве многочленов степени не выше n.

3. Множество компланарных геометрических векторов является линейным подпространством в пространстве всех геометрических векторов трёхмерного евклидова пространства.

4. Нулевой вектор является линейным подпространством в том линейном пространстве, которому он принадлежит.

5. Множество диагональных матриц порядка n является линейным подпространством во множестве квадратных матриц порядка n.

Пусть А и В – два линейных подпространства пространства L .

Определение 23. Суммой подпространств А и В называется множество всех возможных элементов вида а + в, где а Î А, в Î В. (Обозначение А + В)

Теорема 15. Сумма линейных подпространств из L есть линейное подпространство из L.

Доказательство. Пусть а1 + в1 и а2 + в2 – любые два элемента из А + В. Тогда (а1 + в1) + (а2 + в2) = (а1 + а2) + (в1 + в2) Î А + В, так как а1 + а2 Î А, в1 + в2 Î В. Кроме того l×(а + в) = l×а + l×в Î А + В, так как l×а Î А, l×в Î В. Следовательно, по теореме 14 сумма А+ В является линейным подпространством в L.

Теорема 16.Пересечение линейных подпространств из L есть линейное подпространство из L.

Доказательство проведите самостоятельно.

Теорема 17.Размерность суммы двух линейных подпространств равна сумме размерностей слагаемых минус размерность их пересечения.

Доказательство. Пусть С = А + В, где А и В линейные подпространства пространства L. Пусть D = А Ç В. Выберем базис d = (d1, d2, … , dк) в подпространстве D и дополним его векторами е = (е1, е2, … , еm) и f = (f1, f2 … , fs) так, чтобы система (е1, е2, … , еm, d1, d2, … , dк) была базисом в подпространстве А, а система (d1, d2, … , dк,f1, f2 … , fs ) была базисом в В. Покажем, что система (е1, е2, … , еm , d1, d2, … , dк , f1, f2 … , fs) является базисом в подпространстве С. Если с Î С, то с = а + в. Так как а Î А, то а есть линейная комбинация векторов систем е и d. Так как в Î В, то в есть линейная комбинация векторов систем d и f . Но тогда с линейно выражается через векторы е, d и f . Остаётся показать, что система векторов (е1, е2, … , еm , d1, d2, … , dк , f1, f2 … , fs) линейно независима. Для этого рассмотрим a1е1 + a2е2 + … + amеm + b1d1 + b2d2 + ... + bкdк + g1f1 + g2f2 + … + gsfs = 0. Вектор а = a1е1 + a2е2 + … + amеm + b1d1 + b2d2 + ... + bкdк лежит в подпространстве А. Но в то же время а = – g1f1 – g2f2 – … – gsfs . Следовательно, а Î В. Итак, а Î D . Если бы а не был нулевым вектором, то он не мог бы выражаться через векторы системы f . Следовательно, – g1f1 – g2f2 – … – gsfs = 0. Так как векторы системы f линейно независимы, то g1= g2= …= gs = 0. Но тогда a1е1 + a2е2 + … + amеm + b1d1 + b2d2 + ... + bкdк = 0. Так как система векторов (е, d ) линейно независима, то отсюда следует, что a1 = a2 = … = am = b1 = b2 = … = bк = 0. Итак, система (е1, е2, … , еm , d1, d2, … , dк , f1, f2 … , fs) является базисом в подпространстве С. Отсюда dim C = m + k + s = (m + k) + (k + s) – k = dim A + dim B – dim D .

– Конец работы –

Эта тема принадлежит разделу:

ЛИНЕЙНАЯ АЛГЕБРА

З И Андреева... ЛИНЕЙНАЯ АЛГЕБРА...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Подпространства линейных пространств

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЛИНЕЙНАЯ АЛГЕБРА
Учебное пособие   Пермь 2011   ББК 22.14 УДК 512.6 А 655 Библиогр. назв. ISBN   Учебное посо

I.СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ. МЕТОД ГАУССА
Теория систем линейных уравнений кладёт начало большому и важному разделу алгебры – линейной алгебре. Отличие от элементарной алгебры в линейной алгебре изучаются системы любого числа уравнений с л

Определители второго и третьего порядков
Одним из источников появления определителей 2-го и 3-го порядков являются системы двух и трёх линейных уравнений с двумя и соответственно тремя переменными. Пусть дана система

Комплексные числа
Определение 4. Комплексным числом называется выражение вида а + вi, где а и в –

Перестановки и подстановки
Мы получили два эквивалентных определения определителя третьего порядка (формулы (4) и (5)). С помощью (4) определитель 3-го порядка вводится с помощью определителей второго порядка (разложение по

Определители n-го порядка
Пусть А = произвольная квадратная матрица n-го порядка с действительными (или комплексными) элементами.

Сложение матриц. Умножение матрицы на действительное (комплексное) число
Рассмотрим множество Mmn всех матриц размерности m´n с действительными (комплексными) элементами. Определение 8. Суммой двух матриц одинаков

Простые и двойные суммы
Введём некоторые общематематические понятия и обозначения. Определение 10. Сумма вида а1 + а2 + … +аn называется

Умножение матриц
Пусть А – матрица размерности m´n и В – матрица размерности n´ к. Произведением матрицы А на матрицу В называется матрица С

Решение матричных уравнений
Рассмотрим простейшие матричные уравнения вида А×Х = В (14) и Х×А = В (15). Возможны два случая: 1) матрица А квадратная невырожденная; 2) матрица А

Линейная зависимость и независимость векторов
Пусть L – линейное пространство над полем Р. Пусть а1, а2, … , аn (*) конечная система векто

Базис векторного пространства. Координаты вектора
Пусть L – линейное пространство над полем Р. Определение 18. Базисом линейного пространства называется любая упорядо

Матрица перехода. Связь координат вектора в разных базисах
Пусть L – линейное пространство над полем Р и пусть в нём зафиксированы два базиса е = (е

Изоморфизм линейных пространств
Определение 24. Два линейных пространства L и L1 над одним и тем же полем Р называются

Ранг матрицы
Пусть Р некоторое фиксированное поле и пусть А = произвольная матрица размерност

Решение системы линейных уравнений с помощью ранга матрицы
Пусть дана система линейных уравнений (25), коэффициенты которых принадлежат данному полю Р

Пространство решений системы линейных однородных уравнений
Пусть дана система (30) линейных однородных уравнений с коэффициентами из поля Р.

Связь решений однородной и неоднородной систем линейных уравнений
  Пусть (25) произвольная система линейных неоднородных уравнений с коэффициентами из поля

Линейные преобразования линейного пространства
Определение 35. Линейным преобразованием линейного пространства называется линейный оператор данного линейного пространства самого в себя. j : L

Невырожденные линейные преобразования
Пусть Ln – линейное n-мерное пространство над полем Р и пусть j : Ln ® Ln

Собственные векторы и собственные значения линейного преобразования
Пусть Ln – линейное n-мерное пространство над полем Р, j : Ln® Ln

Линейные преобразования в базисе из собственных векторов. Линейные преобразования с простым спектром
Теорема 39. Линейное преобразование j линейного пространства Ln над полем Р имеет в базисе е

Определение 43
а) Р = R Будем говорить, что в действительном линейном пространстве L определено скалярное произведение векторов, если каждой упорядоченной паре векторов

Матрица Грама в евклидовом пространстве
Пусть Еn – n-мерное евклидово пространство и пусть е = (е1, е2,

Ортонормированные базисы в евклидовом пространстве
Определение 51. Базис е = (е1, е2,... , еn) про

Изоморфизм евклидовых пространств
Определение 52. Два евклидовых пространства Е и Е1 называются изоморфными, если они изоморфны

VIII. НЕКОТОРЫЕ ВИДЫ ЛИНЕЙНЫХ ПРЕОБРАЗОВАНИЙ ЕВКЛИДОВЫХ ПРОСТРАНСТВ
Так как евклидовы пространства являются линейными пространствами, то все свойства линейных преобразований линейных пространств верны и в евклидовых пространствах. Но все эти свойства связаны лишь с

Ортогональные линейные преобразования
Определение 53. Линейное преобразование j евклидова пространства Е называется ортогональным, если для любых векторов

Сопряженные линейные преобразования
Пусть j - линейное преобразование евклидова пространства Еn . Определение 55. Линейное преобразование

Самосопряженные (симметрические) линейные преобразования
Определение 56. Линейное преобразование называется самосопряжённым, если оно совпадает со своим сопряжённым преобразованием ( j - самосопряжённое

Линейные формы
Пусть Ln – n-мерное линейное пространство над полем Р и f –линейное отображение пространства Ln

Билинейные формы
Пусть Ln – n-мерное линейное пространство над полем Р . Определение 59. Отображение f

Квадратичные формы
Пусть Ln – n-мерное линейное пространство над полем Р и пусть на нём задана симметрическая билинейная форма f (

Приведение квадратичной формы к каноническому виду с помощью выделения полных квадратов
Пусть Ln – n-мерное линейное пространство над полем Р и пусть на нём задана квадратичная форма j(а

Закон инерции квадратичных форм
Квадратичную форму можно приводить к нормальному виду различными невырожденными линейными преобразованиями (преобразованиями координат). Возникает вопрос: как связаны между собой различные нормальн

Распадающиеся квадратичные формы
Определение 66. Квадратичная форма называется распадающейся, если её можно представить в виде произведения двух линейных форм. Теоре

ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ
  1. Комплексные числа: определение; алгебраическая форма, сложение и умножение комплексных чисел, заданных в алгебраической форме; изображение комплексных чисел на евклидовой плоскос

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги