рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Пространство решений системы линейных однородных уравнений

Пространство решений системы линейных однородных уравнений - раздел Математика, ЛИНЕЙНАЯ АЛГЕБРА Пусть Дана Система (30) Линейных Однородных Уравнений С Коэффициентами Из Пол...

Пусть дана система (30) линейных однородных уравнений с коэффициентами из поля Р.

(30) Так как столбец свободных членов в матрице А1 этой системы состоит только из нулей, то rang A = rang A1, т.е. система линейных однородных уравнений всегда совместна. В частности она всегда имеет нулевое решение. Рассмотрим множество всех возможных решений системы (30).

Пусть a =(a1, a2, … , an) и b =(b1, b2, … , bn) – любые два из них. Их можно рассматривать, как векторы в арифметическом n-мерном пространстве над полем Р. Пусть l – любой элемент поля Р. Тогда a +b = (a1 + b1, a2 + b2, … , an + bn ), l×a = (la1, la2, … , lan). Подставим компоненты этих векторов в произвольное s-е уравнение системы (30). Получим Итак, если a и b – любые два решения системы (30) и l – любой элемент поля Р, то a +b и l×a тоже являются решением этой системы. Но тогда из теоремы 14 следует

Теорема 27. Множество решений системы линейных однородных уравнений с n переменными есть линейное подпространство арифметического пространства Аn .

Теорема 28. Размерность пространства решений системы линейных однородных уравнений равна n r, где n – число неизвестных, r – ранг матрицы системы.

Доказательство. Пусть L – пространство решений системы (30). Тогда L Ì Аn . Пусть a = (a1, a2, … ar, ar+1, … , an) – произвольное решение системы. Пусть (ar+1, … , an) – набор свободных неизвестных, соответствующий этому решению. Множество всех возможных наборов свободных неизвестных есть арифметическое (n r)-мерное пространство Аn–r . Зададим отображение j: L ® Аn–r по правилу

a = (a1, a2, … ar, ar+1, … , an) ® j(a) = (ar+1, … , an).

Покажем, что j – изоморфизм (определение 24). Для этого нужно проверить три условия.

1. Покажем, что j – взаимнооднозначное отображение. Решению a = (a1, a2, … ar, ar+1, … , an) соответствует только один набор (ar+1, … , an), следовательно, j – однозначное отображение. Обратно, если задать элемент (ar+1, … , an) из Аn–r , то по теореме Крамера найдётся только один набор (a1, a2, … ar ) искомых неизвестных, т.е. каждый элемент j(a) из Аn–r соответствует единственному элементу из L .

2. j(la) = (lar+1, … , lan ) = (ar+1, … , an ) = l×j(а).

3. j(а + в) = (ar+1 + br+1, … ,an + bn ) = (ar+1, … , an) + (br+1, … , bn ) = j(а) + j(в).

Итак, пространство решений системы линейных однородных уравнений изоморфно арифметическому (n r)-мерному пространству. Следовательно, размерность L равна (n r).

Определение 29. Базис пространства решений системы линейных однородных уравнений называется её фундаментальной системой решений.

Так как при изоморфизме базис пространства Аn–r соответствует базису пространства L ,то для того. чтобы найти фундаментальную систему решений для системы (30), достаточно выбрать (n r) линейно независимых наборов свободных неизвестных и для каждого из них найти решение данной системы.

Следствие.Если а1, а2, …, аn–r фундаментальная система решений системы линейных однородных уравнений (30) и С1, С2, … , Сn–r – произвольные элементы поля Р, то С1а1 + С2а2 + … + Сn–r аn–r – общее решение этой системы.

– Конец работы –

Эта тема принадлежит разделу:

ЛИНЕЙНАЯ АЛГЕБРА

З И Андреева... ЛИНЕЙНАЯ АЛГЕБРА...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Пространство решений системы линейных однородных уравнений

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЛИНЕЙНАЯ АЛГЕБРА
Учебное пособие   Пермь 2011   ББК 22.14 УДК 512.6 А 655 Библиогр. назв. ISBN   Учебное посо

I.СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ. МЕТОД ГАУССА
Теория систем линейных уравнений кладёт начало большому и важному разделу алгебры – линейной алгебре. Отличие от элементарной алгебры в линейной алгебре изучаются системы любого числа уравнений с л

Определители второго и третьего порядков
Одним из источников появления определителей 2-го и 3-го порядков являются системы двух и трёх линейных уравнений с двумя и соответственно тремя переменными. Пусть дана система

Комплексные числа
Определение 4. Комплексным числом называется выражение вида а + вi, где а и в –

Перестановки и подстановки
Мы получили два эквивалентных определения определителя третьего порядка (формулы (4) и (5)). С помощью (4) определитель 3-го порядка вводится с помощью определителей второго порядка (разложение по

Определители n-го порядка
Пусть А = произвольная квадратная матрица n-го порядка с действительными (или комплексными) элементами.

Сложение матриц. Умножение матрицы на действительное (комплексное) число
Рассмотрим множество Mmn всех матриц размерности m´n с действительными (комплексными) элементами. Определение 8. Суммой двух матриц одинаков

Простые и двойные суммы
Введём некоторые общематематические понятия и обозначения. Определение 10. Сумма вида а1 + а2 + … +аn называется

Умножение матриц
Пусть А – матрица размерности m´n и В – матрица размерности n´ к. Произведением матрицы А на матрицу В называется матрица С

Решение матричных уравнений
Рассмотрим простейшие матричные уравнения вида А×Х = В (14) и Х×А = В (15). Возможны два случая: 1) матрица А квадратная невырожденная; 2) матрица А

Линейная зависимость и независимость векторов
Пусть L – линейное пространство над полем Р. Пусть а1, а2, … , аn (*) конечная система векто

Базис векторного пространства. Координаты вектора
Пусть L – линейное пространство над полем Р. Определение 18. Базисом линейного пространства называется любая упорядо

Матрица перехода. Связь координат вектора в разных базисах
Пусть L – линейное пространство над полем Р и пусть в нём зафиксированы два базиса е = (е

Подпространства линейных пространств
Определение 22. Подпространством линейного пространства называется такое множество его элементов, которое само является линейным пространством над тем же полем.

Изоморфизм линейных пространств
Определение 24. Два линейных пространства L и L1 над одним и тем же полем Р называются

Ранг матрицы
Пусть Р некоторое фиксированное поле и пусть А = произвольная матрица размерност

Решение системы линейных уравнений с помощью ранга матрицы
Пусть дана система линейных уравнений (25), коэффициенты которых принадлежат данному полю Р

Связь решений однородной и неоднородной систем линейных уравнений
  Пусть (25) произвольная система линейных неоднородных уравнений с коэффициентами из поля

Линейные преобразования линейного пространства
Определение 35. Линейным преобразованием линейного пространства называется линейный оператор данного линейного пространства самого в себя. j : L

Невырожденные линейные преобразования
Пусть Ln – линейное n-мерное пространство над полем Р и пусть j : Ln ® Ln

Собственные векторы и собственные значения линейного преобразования
Пусть Ln – линейное n-мерное пространство над полем Р, j : Ln® Ln

Линейные преобразования в базисе из собственных векторов. Линейные преобразования с простым спектром
Теорема 39. Линейное преобразование j линейного пространства Ln над полем Р имеет в базисе е

Определение 43
а) Р = R Будем говорить, что в действительном линейном пространстве L определено скалярное произведение векторов, если каждой упорядоченной паре векторов

Матрица Грама в евклидовом пространстве
Пусть Еn – n-мерное евклидово пространство и пусть е = (е1, е2,

Ортонормированные базисы в евклидовом пространстве
Определение 51. Базис е = (е1, е2,... , еn) про

Изоморфизм евклидовых пространств
Определение 52. Два евклидовых пространства Е и Е1 называются изоморфными, если они изоморфны

VIII. НЕКОТОРЫЕ ВИДЫ ЛИНЕЙНЫХ ПРЕОБРАЗОВАНИЙ ЕВКЛИДОВЫХ ПРОСТРАНСТВ
Так как евклидовы пространства являются линейными пространствами, то все свойства линейных преобразований линейных пространств верны и в евклидовых пространствах. Но все эти свойства связаны лишь с

Ортогональные линейные преобразования
Определение 53. Линейное преобразование j евклидова пространства Е называется ортогональным, если для любых векторов

Сопряженные линейные преобразования
Пусть j - линейное преобразование евклидова пространства Еn . Определение 55. Линейное преобразование

Самосопряженные (симметрические) линейные преобразования
Определение 56. Линейное преобразование называется самосопряжённым, если оно совпадает со своим сопряжённым преобразованием ( j - самосопряжённое

Линейные формы
Пусть Ln – n-мерное линейное пространство над полем Р и f –линейное отображение пространства Ln

Билинейные формы
Пусть Ln – n-мерное линейное пространство над полем Р . Определение 59. Отображение f

Квадратичные формы
Пусть Ln – n-мерное линейное пространство над полем Р и пусть на нём задана симметрическая билинейная форма f (

Приведение квадратичной формы к каноническому виду с помощью выделения полных квадратов
Пусть Ln – n-мерное линейное пространство над полем Р и пусть на нём задана квадратичная форма j(а

Закон инерции квадратичных форм
Квадратичную форму можно приводить к нормальному виду различными невырожденными линейными преобразованиями (преобразованиями координат). Возникает вопрос: как связаны между собой различные нормальн

Распадающиеся квадратичные формы
Определение 66. Квадратичная форма называется распадающейся, если её можно представить в виде произведения двух линейных форм. Теоре

ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ
  1. Комплексные числа: определение; алгебраическая форма, сложение и умножение комплексных чисел, заданных в алгебраической форме; изображение комплексных чисел на евклидовой плоскос

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги