рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Канонический вид квадратичной формы

Канонический вид квадратичной формы - раздел Математика, Обратная матрица. Решение матричных уравнений   Квадратичная Форма Называется Канонической, Если Все ...

 

Квадратичная форма называется канонической, если все т. е.

Всякую квадратичную форму можно привести к каноническому виду с помощью линейных преобразований. На практике обычно применяют следующие способы.

1. Ортогональное преобразование пространства :

где - собственные значения матрицы A.

2. Метод Лагранжа - последовательное выделение полных квадратов. Например, если

Затем подобную процедуру проделывают с квадратичной формой и т. д. Если в квадратичной форме все но есть то после предварительного преобразования дело сводится к рассмотренной процедуре. Так, если, например, то полагаем

3. Метод Якоби (в случае, когда все главные миноры квадратичной формы отличны от нуля):

 

№31

Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим уравнением прямой.В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

• C = 0, А ≠0, В ≠ 0 – прямая проходит через начало координат

• А = 0, В ≠0, С ≠0 { By + C = 0}- прямая параллельна оси Ох

• В = 0, А ≠0, С ≠ 0 { Ax + C = 0} – прямая параллельна оси Оу

• В = С = 0, А ≠0 – прямая совпадает с осью Оу

• А = С = 0, В ≠0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

 

Прямая в пространстве может быть задана:

1) как линия пересечения двух плоскостей,т.е. системой уравнений:

A1 x + B1 y + C1 z + D1 = 0, A2 x + B2 y + C2 z + D2 = 0; (3.2)

2) двумя своими точками M1(x1, y1, z1) и M2(x2, y2, z2), тогда прямая, через них проходящая, задается уравнениями:

=; (3.3)

3) точкой M1(x1, y1, z1), ей принадлежащей, и вектором a(m, n, р), ей коллинеарным. Тогда прямая определяется уравнениями:

. (3.4)

Уравнения (3.4) называются каноническими уравнениями прямой.

Векторa называется направляющим вектором прямой.

Параметрические уравнения прямой получим, приравняв каждое из отношений (3.4) параметру t:

x = x1 +mt, y = y1 + nt, z = z1 + рt. (3.5)

Решая систему (3.2) как систему линейных уравнений относительно неизвестных x и y, приходим к уравнениям прямой впроекциях или к приведенным уравнениям прямой:

x = mz + a, y = nz + b. (3.6)

От уравнений (3.6) можно перейти к каноническим уравнениям, находя z из каждого уравнения и приравнивая полученные значения:

.

От общих уравнений (3.2) можно переходить к каноническим и другим способом, если найти какую-либо точку этой прямой и ее направляющий вектор n= [n1, n2], где n1(A1, B1, C1) и n2(A2, B2, C2) - нормальные векторы заданных плоскостей. Если один из знаменателей m, n или р в уравнениях (3.4) окажется равным нулю, то числитель соответствующей дроби надо положить равным нулю, т.е. система

равносильна системе ; такая прямая перпендикулярна к оси Ох.

Система равносильна системе x = x1, y = y1; прямая параллельна оси Oz.

 

№32

Всякое уравнение первой степени относительно координат x, y, z

Ax + By + Cz +D = 0 (3.1)

задает плоскость, и наоборот: всякая плоскость может быть представлена уравнением (3.1), которое называетсяуравнением плоскости.

Вектор n (A, B, C ), ортогональный плоскости, называется нормальным вектором плоскости. В уравнении (3.1) коэффициенты A, B, C одновременно не равны 0.

Особые случаи уравнения (3.1):

1. D = 0, Ax+By+Cz = 0 - плоскость проходит через начало координат.

2. C = 0, Ax+By+D = 0 - плоскость параллельна оси Oz.

3. C = D = 0, Ax +By = 0 - плоскость проходит через ось Oz.

4. B = C = 0, Ax + D = 0 - плоскость параллельна плоскости Oyz.

Уравнения координатных плоскостей: x = 0, y = 0, z = 0.

 

 

№33-36

Прямая может принадлежать и не принадлежать плоскости. Она принадлежит плоскости, если хотя бы две точки ее лежат на плоскости.

Если прямая не принадлежит плоскости, она может быть параллельной ей или пересекать ее.

Прямая параллельна плоскости, если она параллельна другой прямой, лежащей в этой плоскости.

Прямая может пересекать плоскость под различными углами и, в частности, быть перпендикулярной ей.

Точка по отношению к плоскости может быть расположена следующим образом: принадлежать или не принадлежать ей. Точка принадлежит плоскости, если она расположена на прямой, расположенной в этой плоскости.

В пространстве две прямые могут либо пересекаться, либо быть параллельными, либо быть скрещенными.

Параллельность отрезков прямых сохраняется в проекциях.

Если прямые пересекаются, то точки пересечения их одноимённых проекций находятся на одной линии связи.

Скрещивающиеся прямые не принадлежат одной плоскости, т.е. не пересекаются и не параллельны.

на чертеже одноименные проекции прямых, взятые отдельно, имеют признаки пересекающихся или параллельных прямых.

 

№37

Эллипс. Эллипсом называется геометрическое место точек, для которых сумма расстояний до двух фиксированных точек (фокусов) есть для всех точек эллипса одна и та же постоянная величина (эта постоянная величина должна быть больше, чем расстояние между фокусами).

Простейшее уравнение эллипса

где a - большая полуось эллипса, b - малая полуось эллипса. Если 2c - расстояние между фокусами, то между a, b и c (если a > b) существует соотношение

a2 - b2 = c2.

Эксцентриситетом эллипса называется отношение расстояния между фокусами этого эллипса к длине его большой оси

У эллипса эксцентриситет e < 1 (так как c < a), а его фокусы лежат на большой оси.

 

 

№38


 

Уравнение гиперболы, изображенной на рисунке .

Параметры:
a, b – полуоси;
- расстояние между фокусами,
- эксцентриситет;
- асимптоты;
- директрисы.
Прямоугольник, изображенный в центре рисунка – основной прямоугольник, его диагонали есть асимптоты.


 

Уравнение гиперболы, изображенной на рисунке .

Параметры:
a, b – полуоси;
- расстояние между фокусами,
- эксцентриситет;
- асимптоты;
- директрисы.
Прямоугольник, изображенный в центре рисунка – основной прямоугольник, его диагонали есть асимптоты.

 

 

№39

Парабола. Параболой называется геометрическое место точек, каждая из которых одинаково удалена от заданной фиксированной точки и от заданной фиксированной прямой. Точка, о которой идет речь в определении, называется фокусом параболы, а прямая - ее директрисой.

Простейшее уравнение параболы

y2 = 2px. (*)

Входящая в это уравнение величина p называется параметром параболы. Параметр параболы равен расстоянию от директрисы параболы до ее фокуса.

Координаты фокуса F параболы (*) . (фокус параболы лежит на ее оси симметрии) Уравнение директрисы параболы (*)

Эксцентриситет параболы e = 1.


y2 = 2px (p > 0)

 

№40

Уравнения поверхностей второго порядка

Эллипсоид a, b, c — полуоси    
 
Сфера (частный случай эллипсоида)    
 
Однополостный гиперболоид c — действительная полуось, a и b — мнимые полуоси  
Двуполостный гиперболоид c — действительная полуось, a и b — мнимые полуоси  
Конус Вершина конуса в начале координат, направляющая кривая — эллипс с полуосями а и b, плоскость которого находится на расстоянии с от начала координат    
   
Эллиптический параболоид    
   
Гиперболический параболоид    
   
Эллиптический цилиндр a и b — полуоси  
   
Гиперболический цилиндр  
Параболический цилиндр p — фокальный параметр  

 

– Конец работы –

Эта тема принадлежит разделу:

Обратная матрица. Решение матричных уравнений

Обра тная ма трица такая матрица A при умножении на которую исходная матрица A да т в результате единичную матрицу E... Квадратная матрица обратима тогда и только тогда когда она невырожденная то есть е определитель не равен нулю Для...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Канонический вид квадратичной формы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Матричные уравнения решаются с помощью умножения уравнения на обратные матрицы.
Например, чтобы найти матрицу из уравнения

Линейные пространства
Определение линейного пространства   Пусть V - непустое множество (его элементы будем называть векторами и обозначать

Линейные подпространства
Рассмотрим некоторое подмножество X1 линейного пространства X , т.е. X1 Н X . Определение. Подмножество

Матрица линейного преобразования
В примере 19.4 было показано, что преобразование -мерного пространства, заключающееся в умножении коор

Произведение линейного преобразования на число.
  Пусть – линейное преобразование линейного пространства L над полем

Сложение и вычитание линейных преобразований.
  Пусть даны линейные преобразования и

Умножение линейных преобразований.
  В линейном пространстве даны линейные преобразования

Свойства линейных операций над матрицами
  Операции сложения матриц и умножения матрицы на число называются линейными операциями над матрицами. Непосредственно из определений вытекают следующие

Норма вектора
Норма в векторном пространстве над полем вещественных или комплексных чисел — это функционал

Формулировка
Пусть дано линейное пространство со скалярным произведением

Комментарии
В конечномерном случае можно заметить, что , где

Доказательство
· Если то

Квадратичные формы
Определение квадратичной формы   Квадратичная форма переменных

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги