рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Основные определения

Основные определения - раздел Математика, Список основных статей по линейной алгебре Определение 1. Матрицей1) ...

Определение 1. Матрицей1) размера с элементами из множества называется семейство элементов из , пронумерованных упорядоченными парами натуральных чисел , где , . При этом пишут

или, более кратко, . Для фиксированного семейство называется -й строкой2) матрицы . При фиксированном семейство называется -м столбцом3) матрицы . Матрица размера называетсястрокой4), матрица размера столбцом5).

Определение 2. Матрица размера называется квадратной матрицей6) порядка .

Определение 3. Пусть — матрица порядка . Множество называется главной диагональю7) матрицы.

Как правило, от множества требуется, чтобы оно было полем или кольцом.

Определение 4. Пусть — матрица порядка . Следом матрицы8) называется сумма элементов на ее главной диагонали: .

Определение 5. Пусть — матрица порядка с элементами из кольца . Матрица называется диагональной9) и обозначается как , если при .

Определение 6. Пусть — матрица порядка с элементами из кольца . Матрица называется верхней треугольной10), если при .

Определение 7. Пусть — матрица порядка с элементами из кольца . Матрица называется нижней треугольной11), если при .

Определение 8. Пусть — диагональная матрица порядка с элементами из кольца . Матрица называется скалярной12), если все ее элементы на главной диагонали одинаковы.

Определение 9. Скалярная матрица порядка с элементами из кольца называется единичной13), если все ее элементы на главной диагонали равны 1.

Определение 10. Матрица называется симметричной14), если для всех .

Определение 11. Матрица называется кососимметричной15), если для всех .

Пример 1. Матрица вида является верхнетреугольной матрицей порядка 2.

– Конец работы –

Эта тема принадлежит разделу:

Список основных статей по линейной алгебре

Базис и размерность векторного пространства Определение порождает линейно... Билинейное... Векторное пространство Определение для всех для всех...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Основные определения

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Список основных статей по линейной алгебре
§ Аффинное пространство § Базис и размерность векторного пространства § Билинейное отображение § Векторное про

Точечно-векторная аксиоматика аффинного пространства
Определение 1. -мерным аффинным пространством над пол

Определение
Определение 1. Базисом1) ненулевого векторного пространства

Переход от одного базиса к другому
Пусть —

Определение
Пусть — ассоциативное коммутативное кольцо,

Билинейная форма
Пусть — ассоциативное коммутативное кольцо,

Матрица билинейной формы
В случае, когда и

Определение
Определение 1. Пусть — некоторое поле. Абелева группа1)

Подпространство векторного пространства
Определение 2. Непустое множество векторов векторного пространства

Факторпространство
Пусть — подпространство векторного пространства

Определение
Пусть — векторное пространство над полем

Двойственный базис
Предложение 1. Пусть — векторное пространство размерности

Жорданова матрица
Для произвольного поля определены матрицы специального вида с элементами из

Жорданова нормальная форма
Пусть — линейный оператор на конечномерном векторном пространстве

Корневые подпространства
Пусть — собственное значение линейного оператора

Определение
Пусть — ассоциативное коммутативное кольцо,

Определение
Пусть — векторное пространство над полем

Матрица квадратичной формы
Определение 2. Пусть — квадратичная форма на конечномерном векторном пр

Квадратичная форма на вещественном векторном пространстве
Пусть — конечномерноевекторное пространство над полем действительных чисел

Закон инерции квадратичных форм
Определение 1. Говорят, что квадратичная форма в базисе

Положительная определенность
Определение 3. Квадратичная форма называется невырожденной, если ее ранг равен размерности

Неопределенной, если она принимает как положительные, так и отрицательные значения.
Пример 1. Пусть имеет в некотором базисе

Линейная зависимость
Пусть — (левый) модуль над ассоциативным кольцом

Линейные комбинации. Линейная оболочка
Пусть — некоторое подмножество элементов из

Линейная зависимость
Определение 3. Набор элементов модуля

Определение
Определение 1. Линейное пространство над полем

Определение
Определение 1. Пусть — векторные пространства над полем

Частные случаи
Определение 3. Линейное отображение называется линейным оператором

Свойства линейного отображения
Определение 5. Ядром9) линейного отображения

Транспонирование
Пусть — матрица порядка

Сложение и умножение на скаляр
Пусть и

Умножение матриц
Пусть и

Определение
Определение 1. Пусть и

Определение
Определение 1. Многочлен минимальной степени, аннулирующий оператор

Определение
Пусть — линейный оператор с матрицей

Определитель
Пусть — квадратная матрица порядка

Свойства определителя
Предложение 1. Определитель квадратной матрицы и определитель транспонирова

Пересечение и сумма
Пусть и

Внутренняя прямая сумма
Определение 2. Пространство называется прямой суммой2

Внешняя прямая сумма
Пусть и

Горизонтальный и вертикальный ранг
Пусть — поле, и

Элементарные преобразования матрицы
Определение 3. Элементарными преобразованиями3) строк матрицы называются преобразования следующих трех типов: 1. перестановка двух строк,

Минорный ранг
Определение 5. Число называется минорным рангом5)

Определение
Пусть — (левый) модуль над ассоциативным кольцом

Скалярное произведение
Определение 1. Пусть — векторное пространство над полем

Евклидово пространство
Определение 2. Евклидовым векторным пространством2) называется векторное пространство над полем

Алгебраическое дополнение
Определение 3. Пусть — минор порядка

Теорема Лапласа
Теорема 1. (Теорема Лапласа) Зафиксируем в квадратной матрице

Решение.
Способ 1. Вычислим определитель по «правилу треугольника». .

Определители высших порядков
Задача 3. Вычислить определитель . Решение.

Собственные вектора и собственные значения
Определение 2. Ненулевой вектор из одномерного подпространства, инвариантного относительно

Характеристический многочлен
Определение 5. Характеристическим многочленом11) оператора

Правило Крамера
Задача 1. Решить систему линейных уравнений

Базис и размерность пространства
Так как в линейном пространстве векторы можно складывать и умножать на числа, то из них можно составлять линейные комбинации и можно ввести понятия линейной зависимости и линейной независимости сис

Решение.
По определению ядро линейного оператора , или ker

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги